
ejabberd 2.0.0

Installation and Operation Guide

February 21, 2008

ejabberd Development Team

2

Contents

1 Introduction 7

1.1 Key Features . 8

1.2 Additional Features . 9

2 Installing ejabberd 11

2.1 Installing ejabberd with Binary Installer . 11

2.2 Installing ejabberd with Operating System specific packages 12

2.3 Installing ejabberd with CEAN . 12

2.4 Installing ejabberd from Source Code . 12

2.4.1 Requirements . 12

2.4.2 Download Source Code . 13

2.4.3 Compile . 13

2.4.4 Install . 14

2.4.5 Start . 14

2.4.6 Specific Notes for BSD . 15

2.4.7 Specific Notes for Microsoft Windows . 15

2.5 Create a Jabber Account for Administration . 16

2.6 Upgrading ejabberd . 17

3

4 Contents

3 Configuring ejabberd 19

3.1 Basic Configuration . 19

3.1.1 Host Names . 19

3.1.2 Virtual Hosting . 20

3.1.3 Listening Ports . 21

3.1.4 Authentication . 27

3.1.5 Access Rules . 30

3.1.6 Shapers . 32

3.1.7 Default Language . 33

3.2 Database and LDAP Configuration . 33

3.2.1 MySQL . 34

3.2.2 Microsoft SQL Server . 36

3.2.3 PostgreSQL . 37

3.2.4 ODBC Compatible . 39

3.2.5 LDAP . 40

3.3 Modules Configuration . 44

3.3.1 Overview . 44

3.3.2 Common Options . 46

3.3.3 mod announce . 47

3.3.4 mod disco . 49

3.3.5 mod echo . 50

3.3.6 mod http bind . 50

3.3.7 mod http fileserver . 51

3.3.8 mod irc . 52

3.3.9 mod last . 53

3.3.10 mod muc . 54

3.3.11 mod muc log . 57

3.3.12 mod offline . 59

CONTENTS 5

3.3.13 mod privacy . 60

3.3.14 mod private . 60

3.3.15 mod proxy65 . 61

3.3.16 mod pubsub . 62

3.3.17 mod register . 63

3.3.18 mod roster . 64

3.3.19 mod service log . 65

3.3.20 mod shared roster . 65

3.3.21 mod stats . 66

3.3.22 mod time . 67

3.3.23 mod vcard . 68

3.3.24 mod vcard ldap . 69

3.3.25 mod version . 72

4 Managing an ejabberd server 75

4.1 ejabberdctl . 75

4.1.1 Commands . 75

4.1.2 Erlang runtime system . 76

4.2 Web Admin . 77

4.3 Ad-hoc Commands . 79

4.4 Change Computer Hostname . 79

5 Securing ejabberd 81

5.1 Firewall Settings . 81

5.2 epmd . 81

5.3 Erlang Cookie . 82

5.4 Erlang node name . 82

6 Contents

6 Clustering 83

6.1 How it Works . 83

6.1.1 Router . 83

6.1.2 Local Router . 83

6.1.3 Session Manager . 84

6.1.4 s2s Manager . 84

6.2 Clustering Setup . 84

6.3 Service Load-Balancing . 85

6.3.1 Components Load-Balancing . 85

6.3.2 Domain Load-Balancing Algorithm . 85

6.3.3 Load-Balancing Buckets . 86

7 Debugging 87

7.1 Watchdog Alerts . 87

7.2 Log Files . 87

7.3 Debug Console . 88

A Internationalization and Localization 89

B Release Notes 91

C Acknowledgements 93

D Copyright Information 95

Chapter 1

Introduction

ejabberd is a free and open source instant messaging server written in Erlang1.

ejabberd is cross-platform, distributed, fault-tolerant, and based on open standards to achieve
real-time communication.

ejabberd is designed to be a rock-solid and feature rich XMPP server.

ejabberd is suitable for small deployments, whether they need to be scalable or not, as well as
extremely big deployments.

1http://www.erlang.org/

7

http://www.erlang.org/

8 1. Introduction

1.1 Key Features

ejabberd is:

• Cross-platform: ejabberd runs under Microsoft Windows and Unix derived systems such
as Linux, FreeBSD and NetBSD.

• Distributed: You can run ejabberd on a cluster of machines and all of them will serve the
same Jabber domain(s). When you need more capacity you can simply add a new cheap
node to your cluster. Accordingly, you do not need to buy an expensive high-end machine
to support tens of thousands concurrent users.

• Fault-tolerant: You can deploy an ejabberd cluster so that all the information required for
a properly working service will be replicated permanently on all nodes. This means that if
one of the nodes crashes, the others will continue working without disruption. In addition,
nodes also can be added or replaced ‘on the fly’.

• Administrator Friendly: ejabberd is built on top of the Open Source Erlang. As a result
you do not need to install an external database, an external web server, amongst others be-
cause everything is already included, and ready to run out of the box. Other administrator
benefits include:

– Comprehensive documentation.

– Straightforward installers for Linux, Mac OS X, and Windows.

– Web Administration.

– Shared Roster Groups.

– Command line administration tool.

– Can integrate with existing authentication mechanisms.

– Capability to send announce messages.

• Internationalized: ejabberd leads in internationalization. Hence it is very well suited in a
globalized world. Related features are:

– Translated to 24 languages.

– Support for IDNA2.

• Open Standards: ejabberd is the first Open Source Jabber server claiming to fully comply
to the XMPP standard.

– Fully XMPP compliant.

– XML-based protocol.

– Many protocols supported3.

2http://www.ietf.org/rfc/rfc3490.txt
3http://www.ejabberd.im/protocols

http://www.ietf.org/rfc/rfc3490.txt
http://www.ejabberd.im/protocols

1.2 Additional Features 9

1.2 Additional Features

Moreover, ejabberd comes with a wide range of other state-of-the-art features:

• Modular

– Load only the modules you want.
– Extend ejabberd with your own custom modules.

• Security

– SASL and STARTTLS for c2s and s2s connections.
– STARTTLS and Dialback s2s connections.
– Web Admin accessible via HTTPS secure access.

• Databases

– Internal database for fast deployment (Mnesia).
– Native MySQL support.
– Native PostgreSQL support.
– ODBC data storage support.
– Microsoft SQL Server support.

• Authentication

– Internal Authentication.
– PAM, LDAP and ODBC.
– External Authentication script.

• Others

– Support for virtual hosting.
– Compressing XML streams with Stream Compression (XEP-01384).
– Statistics via Statistics Gathering (XEP-00395).
– IPv6 support both for c2s and s2s connections.
– Multi-User Chat6 module with support for clustering and HTML logging.
– Users Directory based on users vCards.
– Publish-Subscribe7 component with support for Personal Eventing via Pubsub8.
– Support for web clients: HTTP Polling9 and HTTP Binding (BOSH)10 services.
– IRC transport.
– Component support: interface with networks such as AIM, ICQ and MSN installing

special tranports.

4http://www.xmpp.org/extensions/xep-0138.html
5http://www.xmpp.org/extensions/xep-0039.html
6http://www.xmpp.org/extensions/xep-0045.html
7http://www.xmpp.org/extensions/xep-0060.html
8http://www.xmpp.org/extensions/xep-00163.html
9http://www.xmpp.org/extensions/xep-0025.html

10http://www.xmpp.org/extensions/xep-0206.html

http://www.xmpp.org/extensions/xep-0138.html
http://www.xmpp.org/extensions/xep-0039.html
http://www.xmpp.org/extensions/xep-0045.html
http://www.xmpp.org/extensions/xep-0060.html
http://www.xmpp.org/extensions/xep-00163.html
http://www.xmpp.org/extensions/xep-0025.html
http://www.xmpp.org/extensions/xep-0206.html

10 1. Introduction

Chapter 2

Installing ejabberd

2.1 Installing ejabberd with Binary Installer

Probably the easiest way to install an ejabberd instant messaging server is using the binary in-
staller published by Process-one. The binary installers of released ejabberd versions are available
in the Process-one ejabberd downloads page: http://www.process-one.net/en/ejabberd/downloads

The installer will deploy and configure a full featured ejabberd server and does not require any
extra dependencies.

In *nix systems, remember to set executable the binary installer before starting it. For example:

chmod +x ejabberd-2.0.0_1-linux-x86-installer.bin
./ejabberd-2.0.0_1-linux-x86-installer.bin

The installer generates desktop shortcuts to start and stop ejabberd.

The Windows installer also adds ejabberd as a system service, and a shortcut to a debug console
for experienced administrators. You can start ejabberd using the shortcut or the Windows
service. Note that the Windows service is a feature still in development, and for example it
doesn’t keep track of changes made manually in ejabberdctl.cfg. If you want ejabberd to be
started automatically at boot time, go to the Windows service settings and set ejabberd to be
automatic started.

On a Linux system, if you want ejabberd to start as daemon at boot time, copy ejabberd.init
from the bin directory to something like /etc/init.d/ejabberd (depending on your distribu-
tion) and call /etc/inid.d/ejabberd start to start it.

The ejabberdctl administration script is included in the bin directory. Please refer to the
section 4.1 for details about ejabberdctl, and configurable options to fine tune the Erlang
runtime system.

11

http://www.process-one.net/en/ejabberd/downloads

12 2. Installing ejabberd

2.2 Installing ejabberd with Operating System specific pack-
ages

Some Operating Systems provide a specific ejabberd package adapted to the system architecture
and libraries. It usually also checks dependencies and performs basic configuration tasks like
creating the initial administrator account. Some examples are Debian and Gentoo. Consult the
resources provided by your Operating System for more information.

Usually those packages create a script like /etc/init.d/ejabberd to start and stop ejabberd
as a service at boot time.

2.3 Installing ejabberd with CEAN

CEAN1 (Comprehensive Erlang Archive Network) is a repository that hosts binary packages
from many Erlang programs, including ejabberd and all its dependencies. The binaries are
available for many different system architectures, so this is an alternative to the binary installer
and Operating System’s ejabberd packages.

You will have to create your own ejabberd start script depending of how you handle your CEAN
installation. The default ejabberdctl script is located into ejabberd’s priv directory and can
be used as an example.

2.4 Installing ejabberd from Source Code

The canonical form for distribution of ejabberd stable releases is the source code package.
Compiling ejabberd from source code is quite easy in *nix systems, as long as your system have
all the dependencies.

2.4.1 Requirements

To compile ejabberd on a ‘Unix-like’ operating system, you need:

• GNU Make

• GCC

• Libexpat 1.95 or higher

• Erlang/OTP R10B-9 up to R11B-5. Erlang R12 releases are not yet officially supported,
and are not recommended for production servers.

• OpenSSL 0.9.6 or higher, for STARTTLS, SASL and SSL encryption. Optional, highly
recommended.

1http://cean.process-one.net/

http://cean.process-one.net/

2.4 Installing ejabberd from Source Code 13

• Zlib 1.2.3 or higher, for Stream Compression support (XEP-0138). Optional.

• GNU Iconv 1.8 or higher, for the IRC Transport (mod irc). Optional. Not needed on
systems with GNU Libc.

2.4.2 Download Source Code

Released versions of ejabberd are available in the Process-one ejabberd downloads page: http://www.process-one.net/en/ejabberd/downloads

Alternatively, the latest development version can be retrieved from the Subversion repository
using this command:

svn co http://svn.process-one.net/ejabberd/trunk ejabberd

2.4.3 Compile

To compile ejabberd execute the commands:

./configure
make

The build configuration script provides several parameters. To get the full list run the command:

./configure --help

Some options that you may be interested in modifying:

--prefix=/ Specify the path prefix where the files will be copied when running the make install
command.

--enable-pam Enable the PAM authentication method.

--enable-odbc or --enable-mssql Required if you want to use an external database. See
section 3.2 for more information.

--enable-full-xml Enable the use of XML based optimisations. It will for example use CDATA
to escape characters in the XMPP stream. Use this option only if you are sure your Jabber
clients include a fully compliant XML parser.

--disable-transient-supervisors Disable the use of Erlang/OTP supervision for transient
processes.

http://www.process-one.net/en/ejabberd/downloads

14 2. Installing ejabberd

2.4.4 Install

To install ejabberd in the destination directories, run the command:

make install

Note that you may need to have administrative privileges in the system.

The files and directories created are, by default:

/etc/ejabberd/ Configuration files:

ejabberd.cfg ejabberd configuration file

ejabberdctl.cfg Configuration file of the administration script

inetrc Network DNS configuration

/sbin/ejabberdctl Administration script

/var/lib/ejabberd/ .erlang.cookie Erlang cookie file

db Mnesia database spool files

ebin Binary Erlang files (*.beam)

priv lib Binary system libraries (*.so)
msgs Translated strings (*.msgs)

/var/log/ejabberd/ Log files (see section 7.2):

ejabberd.log ejabberd service log

sasl.log Erlang/OTP system log

2.4.5 Start

You can use the ejabberdctl command line administration script to start and stop ejabberd.

Usage example:

$ ejabberdctl start

$ ejabberdctl status
Node ejabberd@localhost is started. Status: started
ejabberd is running

$ ejabberdctl stop

Please refer to the section 4.1 for details about ejabberdctl, and configurable options to fine
tune the Erlang runtime system.

2.4 Installing ejabberd from Source Code 15

2.4.6 Specific Notes for BSD

The command to compile ejabberd in BSD systems is:

gmake

2.4.7 Specific Notes for Microsoft Windows

Requirements

To compile ejabberd on a Microsoft Windows system, you need:

• MS Visual C++ 6.0 Compiler

• Erlang/OTP R11B-5 or higher2

• Expat 2.0.0 or higher3

• GNU Iconv 1.9.24 (optional)

• Shining Light OpenSSL 0.9.8d or higher5 (to enable SSL connections)

• Zlib 1.2.3 or higher6

Compilation

We assume that we will try to put as much library as possible into C:\sdk\ to make it easier to
track what is install for ejabberd.

1. Install Erlang emulator (for example, into C:\sdk\erl5.5.5).

2. Install Expat library into C:\sdk\Expat-2.0.0 directory.

Copy file C:\sdk\Expat-2.0.0\Libs\libexpat.dll to your Windows system directory
(for example, C:\WINNT or C:\WINNT\System32)

3. Build and install the Iconv library into the directory C:\sdk\GnuWin32.

Copy file C:\sdk\GnuWin32\bin\lib*.dll to your Windows system directory (more in-
stallation instructions can be found in the file README.woe32 in the iconv distribution).

Note: instead of copying libexpat.dll and iconv.dll to the Windows directory, you can
add the directories C:\sdk\Expat-2.0.0\Libs and C:\sdk\GnuWin32\bin to the PATH
environment variable.

2http://erlang.org/download.html
3http://sourceforge.net/project/showfiles.php?group id=10127&package id=11277
4http://www.gnu.org/software/libiconv/
5http://www.slproweb.com/products/Win32OpenSSL.html
6http://www.zlib.net/

http://erlang.org/download.html
http://sourceforge.net/project/showfiles.php?group_id=10127\&package_id=11277
http://www.gnu.org/software/libiconv/
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.zlib.net/

16 2. Installing ejabberd

4. Install OpenSSL in C:\sdk\OpenSSL and add C:\sdk\OpenSSL\lib\VC to your path or
copy the binaries to your system directory.

5. Install ZLib in C:\sdk\gnuWin32. Copy C:\sdk\GnuWin32\bin\zlib1.dll to your system
directory. If you change your path it should already be set after libiconv install.

6. Make sure the you can access Erlang binaries from your path. For example: set PATH=%PATH%;"C:\sdk\erl5.5.5\bin"

7. Depending on how you end up actually installing the library you might need to check and
tweak the paths in the file configure.erl.

8. While in the directory ejabberd\src run:

configure.bat
nmake -f Makefile.win32

9. Edit the file ejabberd\src\ejabberd.cfg and run

werl -s ejabberd -name ejabberd

2.5 Create a Jabber Account for Administration

You need a Jabber account and grant him administrative privileges to enter the ejabberd Web
Admin:

1. Register a Jabber account on your ejabberd server, for example admin1@example.org.
There are two ways to register a Jabber account:

(a) Using ejabberdctl (see section 4.1):

% ejabberdctl register admin1 example.org FgT5bk3

(b) Using a Jabber client and In-Band Registration (see section 3.3.17).

2. Edit the ejabberd configuration file to give administration rights to the Jabber account
you created:

{acl, admins, {user, "admin1", "example.org"}}.
{access, configure, [{allow, admins}]}.

You can grant administrative privileges to many Jabber accounts, and also to accounts in
other Jabber servers.

3. Restart ejabberd to load the new configuration.

4. Open the Web Admin (http://server:port/admin/) in your favourite browser. Make
sure to enter the full JID as username (in this example: admin1@example.org. The reason
that you also need to enter the suffix, is because ejabberd’s virtual hosting support.

2.6 Upgrading ejabberd 17

2.6 Upgrading ejabberd

To upgrade an ejabberd installation to a new version, simply uninstall the old version, and then
install the new one. Of course, it is important that the configuration file and Mnesia database
spool directory are not removed.

ejabberd automatically updates the Mnesia table definitions at startup when needed. If you
also use an external database for storage of some modules, check if the release notes of the new
ejabberd version indicates you need to also update those tables.

18 2. Installing ejabberd

Chapter 3

Configuring ejabberd

3.1 Basic Configuration

The configuration file will be loaded the first time you start ejabberd. The content from this
file will be parsed and stored in the internal ejabberd database. Subsequently the configuration
will be loaded from the database and any commands in the configuration file are appended to
the entries in the database.

Note that ejabberd never edits the configuration file. So, the configuration changes done using
the Web Admin are stored in the database, but are not reflected in the configuration file. If you
want those changes to be use after ejabberd restart, you can either edit the configuration file,
or remove all its content.

The configuration file contains a sequence of Erlang terms. Lines beginning with a ‘%’ sign are
ignored. Each term is a tuple of which the first element is the name of an option, and any further
elements are that option’s values. If the configuration file do not contain for instance the ‘hosts’
option, the old host name(s) stored in the database will be used.

You can override the old values stored in the database by adding next lines to the configuration
file:

override_global.
override_local.
override_acls.

With these lines the old global options (shared between all ejabberd nodes in a cluster), local
options (which are specific for this particular ejabberd node) and ACLs will be removed before
new ones are added.

3.1.1 Host Names

The option hosts defines a list containing one or more domains that ejabberd will serve.

19

20 3. Configuring ejabberd

Examples:

• Serving one domain:

{hosts, ["example.org"]}.

• Serving one domain, and backwards compatible with older ejabberd versions:

{host, "example.org"}.

• Serving two domains:

{hosts, ["example.net", "example.com"]}.

3.1.2 Virtual Hosting

Options can be defined separately for every virtual host using the host config option. It has
the following syntax:

{host_config, <hostname>, [<option>, <option>, ...]}.

Examples:

• Domain example.net is using the internal authentication method while domain example.com
is using the LDAP server running on the domain localhost to perform authentication:

{host_config, "example.net", [{auth_method, internal}]}.

{host_config, "example.com", [{auth_method, ldap},
{ldap_servers, ["localhost"]},
{ldap_uids, [{"uid"}]},
{ldap_rootdn, "dc=localdomain"},
{ldap_rootdn, "dc=example,dc=com"},
{ldap_password, ""}]}.

• Domain example.net is using ODBC to perform authentication while domain example.com
is using the LDAP servers running on the domains localhost and otherhost:

{host_config, "example.net", [{auth_method, odbc},
{odbc_server, "DSN=ejabberd;UID=ejabberd;PWD=ejabberd"}]}.

{host_config, "example.com", [{auth_method, ldap},
{ldap_servers, ["localhost", "otherhost"]},
{ldap_uids, [{"uid"}]},
{ldap_rootdn, "dc=localdomain"},
{ldap_rootdn, "dc=example,dc=com"},
{ldap_password, ""}]}.

3.1 Basic Configuration 21

If you have several virtual hosts, and you want to define options such as modules with values
specific for some virtual host, instead of defining each option with the syntax

{<option-name>, <option-value>}

you must use this syntax:

{{add, <option-name>}, <option-value>}

Example:

• In this example three virtual hosts have some similar modules, but there are also other
different modules for some specific virtual hosts:

% This ejabberd server has three vhosts:
{hosts, ["one.example.org", "two.example.org", "three.example.org"]}.

% Configuration of modules that are common to all vhosts
{modules,
[
{mod_roster, []},
{mod_configure, []},
{mod_disco, []},
{mod_private, []},
{mod_time, []},
{mod_last, []},
{mod_version, []}
]}.

% Add some modules to vhost one:
{host_config, "one.example.org", [{{add, modules}, [
{mod_echo, [{host, "echo-service.one.example.org"}]}
{mod_http_bind, []},
{mod_logxml, []}

]}]}.

% Add a module just to vhost two:
{host_config, "two.example.org", [{{add, modules}, [
{mod_echo, [{host, "mirror.two.example.org"}]}

]}]}.

3.1.3 Listening Ports

The option listen defines for which addresses and ports ejabberd will listen and what services
will be run on them. Each element of the list is a tuple with the following elements:

22 3. Configuring ejabberd

• Port number.

• Module that serves this port.

• Options to this module.

The available modules, their purpose and the options allowed by each one are:

ejabberd c2s Description Handles c2s connections.

Options access, certfile, inet6, ip, max stanza size, shaper,
starttls, starttls required, tls, zlib

ejabberd s2s in Description Handles incoming s2s connections.

Options inet6, ip, max stanza size

ejabberd service Description Interacts with external components1 (as defined in the
Jabber Component Protocol (XEP-01142).

Options access, hosts, inet6, ip, shaper

ejabberd http Description Handles incoming HTTP connections.

Options certfile, http bind, http poll, inet6, ip,
request handlers, tls, web admin

This is a detailed description of each option allowed by the listening modules:

{access, <access rule>} This option defines access to the port. The default value is all.

{certfile, Path} Full path to a file containing the default SSL certificate. To define a certifi-
cate file specific for a given domain, use the global option domain certfile.

component check from This option can be used with ejabberd service only. It is used to
disable control on the from field on packets send by an external components. The option
can be either true or false. The default value is true which conforms to XEP-01143.

{hosts, [Hostnames], [HostOptions]} This option defines one or more hostnames of con-
nected services and enables you to specify additional options including {password, Secret}.

http bind This option enables HTTP Binding (XEP-01244 and XEP-02065) support. HTTP
Bind enables access via HTTP requests to ejabberd from behind firewalls which do not
allow outgoing sockets on port 5222.

Remember that you must also install and enable the module mod http bind.

If HTTP Bind is enabled, it will be available at http://server:port/http-bind/. Be
aware that support for HTTP Bind is also needed in the Jabber client. Remark also that
HTTP Bind can be interesting to host a web-based Jabber client such as JWChat6 (there
is a tutorial to install JWChat7 with instructions for ejabberd).

3http://www.xmpp.org/extensions/xep-0114.html
4http://www.xmpp.org/extensions/xep-0124.html
5http://www.xmpp.org/extensions/xep-0206.html
6http://jwchat.sourceforge.net/
7http://www.ejabberd.im/jwchat

http://www.xmpp.org/extensions/xep-0114.html
http://www.xmpp.org/extensions/xep-0124.html
http://www.xmpp.org/extensions/xep-0206.html
http://jwchat.sourceforge.net/
http://www.ejabberd.im/jwchat

3.1 Basic Configuration 23

http poll This option enables HTTP Polling (XEP-00258) support. HTTP Polling enables
access via HTTP requests to ejabberd from behind firewalls which do not allow outgoing
sockets on port 5222.

If HTTP Polling is enabled, it will be available at http://server:port/http-poll/. Be
aware that support for HTTP Polling is also needed in the Jabber client. Remark also
that HTTP Polling can be interesting to host a web-based Jabber client such as JWChat9

(there is a tutorial to install JWChat10 with instructions for ejabberd).

inet6 Set up the socket for IPv6.

{ip, IPAddress} This option specifies which network interface to listen for. For example
{ip, {192, 168, 1, 1}}.

{max stanza size, Size} This option specifies an approximate maximum size in bytes of XML
stanzas. Approximate, because it is calculated with the precision of one block of readed
data. For example {max_stanza_size, 65536}. The default value is infinity. Rec-
ommended values are 65536 for c2s connections and 131072 for s2s connections. s2s max
stanza size must always much higher than c2s limit. Change this value with extreme care
as it can cause unwanted disconnect if set too low.

{request handlers, [{Path, Module}]} To define one or several handlers that will serve
HTTP requests. The Path is a list of strings; so the URIs that start with that Path will
be served by Module. For example, if you want mod foo to serve the URIs that start with
/a/b/, and you also want mod http bind to serve the URIs /http-bind/, use this option:
{request handlers, [{["a", "b"], mod foo}, {["http-bind"], mod http bind}]}

{shaper, <access rule>} This option defines a shaper for the port (see section 3.1.6). The
default value is none.

starttls This option specifies that STARTTLS encryption is available on connections to the
port. You should also set the certfile option. You can define a certificate file for a specific
domain using the global option domain certfile.

starttls required This option specifies that STARTTLS encryption is required on connections
to the port. No unencrypted connections will be allowed. You should also set the certfile
option. You can define a certificate file for a specific domain using the global option
domain certfile.

tls This option specifies that traffic on the port will be encrypted using SSL immediately after
connecting. You should also set the certfile option.

web admin This option enables the Web Admin for ejabberd administration which is available
at http://server:port/admin/. Login and password are the username and password of
one of the registered users who are granted access by the ‘configure’ access rule.

zlib This option specifies that Zlib stream compression (as defined in XEP-013811) is available
on connections to the port. Client connections cannot use stream compression and stream
encryption simultaneously. Hence, if you specify both tls (or ssl) and zlib, the latter
option will not affect connections (there will be no stream compression).

8http://www.xmpp.org/extensions/xep-0025.html
9http://jwchat.sourceforge.net/

10http://www.ejabberd.im/jwchat
11http://www.xmpp.org/extensions/xep-0138.html

http://www.xmpp.org/extensions/xep-0025.html
http://jwchat.sourceforge.net/
http://www.ejabberd.im/jwchat
http://www.xmpp.org/extensions/xep-0138.html

24 3. Configuring ejabberd

There are some additional global options:

{s2s use starttls, true|false} This option defines whether to use STARTTLS for s2s con-
nections.

{s2s certfile, Path} Full path to a file containing a SSL certificate.

{domain certfile, Domain, Path} Full path to the file containing the SSL certificate for a
specific domain.

For example, the following simple configuration defines:

• There are three domains. The default certificate file is server.pem. However, the c2s and
s2s connections to the domain example.com use the file example com.pem.

• Port 5222 listens for c2s connections with STARTTLS, and also allows plain connections
for old clients.

• Port 5223 listens for c2s connections with the old SSL.

• Port 5269 listens for s2s connections with STARTTLS.

• Port 5280 listens for HTTP requests, and serves the HTTP Poll service.

• Port 5281 listens for HTTP requests, and serves the Web Admin using HTTPS as explained
in section 4.2.

{hosts, ["example.com", "example.org", "example.net"]}.
{listen,
[
{5222, ejabberd_c2s, [

{access, c2s},
{shaper, c2s_shaper},
starttls, {certfile, "/etc/ejabberd/server.pem"},
{max_stanza_size, 65536}
]},

{5223, ejabberd_c2s, [
{access, c2s},
{shaper, c2s_shaper},
tls, {certfile, "/etc/ejabberd/server.pem"},
{max_stanza_size, 65536}
]},

{5269, ejabberd_s2s_in, [
{shaper, s2s_shaper},
{max_stanza_size, 131072}
]},

{5280, ejabberd_http, [
http_poll
]},

{5281, ejabberd_http, [

3.1 Basic Configuration 25

web_admin,
tls, {certfile, "/etc/ejabberd/server.pem"},
]}

]
}.
{s2s_use_starttls, true}.
{s2s_certfile, "/etc/ejabberd/server.pem"}.
{domain_certfile, "example.com", "/etc/ejabberd/example_com.pem"}.

In this example, the following configuration defines that:

• c2s connections are listened for on port 5222 and 5223 (SSL) and denied for the user called
‘bad’.

• s2s connections are listened for on port 5269 with STARTTLS for secured traffic enabled.

• Port 5280 is serving the Web Admin and the HTTP Polling service. Note that it is also
possible to serve them on different ports. The second example in section ?? shows how
exactly this can be done.

• All users except for the administrators have a traffic of limit 1,000 Bytes/second

• The AIM transport12 aim.example.org is connected to port 5233 with password ‘aimsecret’.

• The ICQ transport JIT (icq.example.org and sms.example.org) is connected to port
5234 with password ‘jitsecret’.

• The MSN transport13 msn.example.org is connected to port 5235 with password ‘msnsecret’.

• The Yahoo! transport14 yahoo.example.org is connected to port 5236 with password
‘yahoosecret’.

• The Gadu-Gadu transport15 gg.example.org is connected to port 5237 with password
‘ggsecret’.

• The Jabber Mail Component16 jmc.example.org is connected to port 5238 with password
‘jmcsecret’.

• The service custom has enabled the special option to avoiding checking the from attribute
in the packets send by this component. The component can send packets in behalf of any
users from the server, or even on behalf of any server.

{acl, blocked, {user, "bad"}}.
{access, c2s, [{deny, blocked},

{allow, all}]}.
{shaper, normal, {maxrate, 1000}}.
{access, c2s_shaper, [{none, admin},

12http://www.ejabberd.im/pyaimt
13http://www.ejabberd.im/pymsnt
14http://www.ejabberd.im/yahoo-transport-2
15http://www.ejabberd.im/jabber-gg-transport
16http://www.ejabberd.im/jmc

http://www.ejabberd.im/pyaimt
http://www.ejabberd.im/pymsnt
http://www.ejabberd.im/yahoo-transport-2
http://www.ejabberd.im/jabber-gg-transport
http://www.ejabberd.im/jmc

26 3. Configuring ejabberd

{normal, all}]}.
{listen,
[{5222, ejabberd_c2s, [{access, c2s}, {shaper, c2s_shaper}]},
{5223, ejabberd_c2s, [{access, c2s},

ssl, {certfile, "/path/to/ssl.pem"}]},
{5269, ejabberd_s2s_in, []},
{5280, ejabberd_http, [http_poll, web_admin]},
{5233, ejabberd_service, [{host, "aim.example.org",

[{password, "aimsecret"}]}]},
{5234, ejabberd_service, [{hosts, ["icq.example.org", "sms.example.org"],

[{password, "jitsecret"}]}]},
{5235, ejabberd_service, [{host, "msn.example.org",

[{password, "msnsecret"}]}]},
{5236, ejabberd_service, [{host, "yahoo.example.org",

[{password, "yahoosecret"}]}]},
{5237, ejabberd_service, [{host, "gg.example.org",

[{password, "ggsecret"}]}]},
{5238, ejabberd_service, [{host, "jmc.example.org",

[{password, "jmcsecret"}]}]},
{5239, ejabberd_service, [{host, "custom.example.org",

[{password, "customsecret"}]},
{service_check_from, false}]}

]
}.
{s2s_use_starttls, true}.
{s2s_certfile, "/path/to/ssl.pem"}.

Note, that for jabberd 1.4- or WPJabber-based services you have to make the transports log and
do XDB by themselves:

<!--
You have to add elogger and rlogger entries here when using ejabberd.
In this case the transport will do the logging.

-->

<log id=’logger’>
<host/>
<logtype/>
<format>%d: [%t] (%h): %s</format>
<file>/var/log/jabber/service.log</file>

</log>

<!--
Some Jabber server implementations do not provide
XDB services (for example, jabberd2 and ejabberd).
xdb_file.so is loaded in to handle all XDB requests.

-->

3.1 Basic Configuration 27

<xdb id="xdb">
<host/>
<load>
<!-- this is a lib of wpjabber or jabberd -->
<xdb_file>/usr/lib/jabber/xdb_file.so</xdb_file>
</load>

<xdb_file xmlns="jabber:config:xdb_file">
<spool><jabberd:cmdline flag=’s’>/var/spool/jabber</jabberd:cmdline></spool>

</xdb_file>
</xdb>

3.1.4 Authentication

The option auth method defines the authentication method that is used for user authentication:

{auth_method, [<method>]}.

The following authentication methods are supported by ejabberd:

• internal (default) — See section 3.1.4.

• external — There are some example authentication scripts17.

• ldap — See section 3.2.5.

• odbc — See section 3.2.1, 3.2.3, 3.2.2 and 3.2.4.

• anonymous — See section 3.1.4.

• pam — See section 3.1.4.

Internal

ejabberd uses its internal Mnesia database as the default authentication method.

• auth method: The value internal will enable the internal authentication method.

Examples:

• To use internal authentication on example.org and LDAP authentication on example.net:

{host_config, "example.org", [{auth_method, [internal]}]}.
{host_config, "example.net", [{auth_method, [ldap]}]}.

• To use internal authentication on all virtual hosts:

{auth_method, internal}.

17http://www.ejabberd.im/extauth

http://www.ejabberd.im/extauth

28 3. Configuring ejabberd

SASL Anonymous and Anonymous Login

The anonymous authentication method can be configured with the following options. Remember
that you can use the host config option to set virtual host specific options (see section 3.1.2).
Note that there also is a detailed tutorial regarding SASL Anonymous and anonymous login
configuration18.

• auth method: The value anonymous will enable the anonymous authentication method.

• allow multiple connections: This value for this option can be either true or false and
is only used when the anonymous mode is enabled. Setting it to true means that the same
username can be taken multiple times in anonymous login mode if different resource are
used to connect. This option is only useful in very special occasions. The default value is
false.

• anonymous protocol: This option can take three values: sasl anon, login anon or both.
sasl anon means that the SASL Anonymous method will be used. login anon means that
the anonymous login method will be used. both means that SASL Anonymous and login
anonymous are both enabled.

Those options are defined for each virtual host with the host config parameter (see sec-
tion 3.1.2).

Examples:

• To enable anonymous login on all virtual hosts:

{auth_method, [anonymous]}.
{anonymous_protocol, login_anon}.

• Similar as previous example, but limited to public.example.org:

{host_config, "public.example.org", [{auth_method, [anonymous]},
{anonymous_protocol, login_anon}]}.

• To enable anonymous login and internal authentication on a virtual host:

{host_config, "public.example.org", [{auth_method, [internal,anonymous]},
{anonymous_protocol, login_anon}]}.

• To enable SASL Anonymous on a virtual host:

{host_config, "public.example.org", [{auth_method, [anonymous]},
{anonymous_protocol, sasl_anon}]}.

• To enable SASL Anonymous and anonymous login on a virtual host:
18http://support.process-one.net/doc/display/MESSENGER/Anonymous+users+support

http://support.process-one.net/doc/display/MESSENGER/Anonymous+users+support

3.1 Basic Configuration 29

{host_config, "public.example.org", [{auth_method, [anonymous]},
{anonymous_protocol, both}]}.

• To enable SASL Anonymous, anonymous login, and internal authentication on a virtual
host:

{host_config, "public.example.org", [{auth_method, [internal,anonymous]},
{anonymous_protocol, both}]}.

PAM Authentication

ejabberd supports authentication via Pluggable Authentication Modules (PAM). PAM is cur-
rently supported in AIX, FreeBSD, HP-UX, Linux, Mac OS X, NetBSD and Solaris. PAM
authentication is disabled by default, so you have to configure and compile ejabberd with PAM
support enabled:

./configure --enable-pam && make install

Options:

pam service This option defines the PAM service name. Default is "ejabberd". Refer to the
PAM documentation of your operation system for more information.

Example:

{auth_method, [pam]}.
{pam_service, "ejabberd"}.

Though it is quite easy to set up PAM support in ejabberd, PAM itself introduces some security
issues:

• To perform PAM authentication ejabberd uses external C-program called epam. By de-
fault, it is located in /var/lib/ejabberd/priv/lib/ directory. You have to set it root
on execution in the case when your PAM module requires root privileges (pam unix.so for
example). Also you have to grant access for ejabberd to this file and remove all other
permissions from it:

chown root:ejabberd /var/lib/ejabberd/priv/lib/epam
chmod 4750 /var/lib/ejabberd/priv/lib/epam

• Make sure you have the latest version of PAM installed on your system. Some old versions
of PAM modules cause memory leaks. If you are not able to use the latest version, you
can kill(1) epam process periodically to reduce its memory consumption: ejabberd will
restart this process immediately.

30 3. Configuring ejabberd

• epam program tries to turn off delays on authentication failures. However, some PAM
modules ignore this behavior and rely on their own configuration options. The example
configuration file ejabberd.pam shows how to turn off delays in pam unix.so module. It is
not a ready to use configuration file: you must use it as a hint when building your own PAM
configuration instead. Note that if you want to disable delays on authentication failures in
the PAM configuration file, you have to restrict access to this file, so a malicious user can’t
use your configuration to perform brute-force attacks.

• You may want to allow login access only for certain users. pam listfile.so module
provides such functionality.

3.1.5 Access Rules

ACL Definition

Access control in ejabberd is performed via Access Control Lists (ACLs). The declarations of
ACLs in the configuration file have the following syntax:

{acl, <aclname>, {<acltype>, ...}}.

<acltype> can be one of the following:

all Matches all JIDs. Example:

{acl, all, all}.

{user, <username>} Matches the user with the name <username> at the first virtual host.
Example:

{acl, admin, {user, "yozhik"}}.

{user, <username>, <server>} Matches the user with the JID <username>@<server> and
any resource. Example:

{acl, admin, {user, "yozhik", "example.org"}}.

{server, <server>} Matches any JID from server <server>. Example:

{acl, exampleorg, {server, "example.org"}}.

{user regexp, <regexp>} Matches any local user with a name that matches <regexp> on local
virtual hosts. Example:

{acl, tests, {user_regexp, "^test[0-9]*$"}}.

{user regexp, <regexp>, <server>} Matches any user with a name that matches <regexp>
at server <server>. Example:

3.1 Basic Configuration 31

{acl, tests, {user_regexp, "^test", "example.org"}}.

{server regexp, <regexp>} Matches any JID from the server that matches <regexp>. Exam-
ple:

{acl, icq, {server_regexp, "^icq\\."}}.

{node regexp, <user regexp>, <server regexp>} Matches any user with a name that matches
<user regexp> at any server that matches <server regexp>. Example:

{acl, yohzik, {node_regexp, "^yohzik$", "^example.(com|org)$"}}.

{user glob, <glob>}

{user glob, <glob>, <server>}

{server glob, <glob>}

{node glob, <user glob>, <server glob>} This is the same as above. However, it uses shell
glob patterns instead of regexp. These patterns can have the following special characters:

* matches any string including the null string.

? matches any single character.

[...] matches any of the enclosed characters. Character ranges are specified by a pair of
characters separated by a ‘-’. If the first character after ‘[’ is a ‘!’, any character
not enclosed is matched.

The following ACLs are pre-defined:

all Matches any JID.

none Matches no JID.

Access Rights

An entry allowing or denying access to different services looks similar to this:

{access, <accessname>, [{allow, <aclname>},
{deny, <aclname>},
...

]}.

When a JID is checked to have access to <accessname>, the server sequentially checks if that
JID matches any of the ACLs that are named in the second elements of the tuples in the list. If
it matches, the first element of the first matched tuple is returned, otherwise the value ‘deny’ is
returned.

Example:

32 3. Configuring ejabberd

{access, configure, [{allow, admin}]}.
{access, something, [{deny, badmans},

{allow, all}]}.

The following access rules are pre-defined:

all Always returns the value ‘allow’.

none Always returns the value ‘deny’.

Limiting Opened Sessions with ACL

The special access max user sessions specifies the maximum number of sessions (authenticated
connections) per user. If a user tries to open more sessions by using different resources, the
first opened session will be disconnected. The error session replaced will be sent to the
disconnected session. The value for this option can be either a number, or infinity. The
default value is infinity.

The syntax is:

{access, max_user_sessions, [{<maxnumber>, <aclname>},
...
]}.

Examples:

• To limit the number of sessions per user to 10 for all users:

{access, max_user_sessions, [{10, all}]}.

3.1.6 Shapers

Shapers enable you to limit connection traffic. The syntax of shapers is like this:

{shaper, <shapername>, <kind>}.

Currently only one kind of shaper called maxrate is available. It has the following syntax:

{maxrate, <rate>}

where <rate> stands for the maximum allowed incoming rate in bytes per second.

Examples:

3.2 Database and LDAP Configuration 33

• To define a shaper named ‘normal’ with traffic speed limited to 1,000 bytes/second:

{shaper, normal, {maxrate, 1000}}.

• To define a shaper named ‘fast’ with traffic speed limited to 50,000 bytes/second:

{shaper, fast, {maxrate, 50000}}.

3.1.7 Default Language

The option language defines the default language of server strings that can be seen by Jabber
clients. If a Jabber client do not support xml:lang, the specified language is used. The default
value is en. In order to take effect there must be a translation file <language>.msg in ejabberd’s
msgs directory.

Examples:

• To set Russian as default language:

{language, "ru"}.

• To set Spanish as default language:

{language, "es"}.

3.2 Database and LDAP Configuration

ejabberd uses its internal Mnesia database by default. However, it is possible to use a relational
database or an LDAP server to store persistent, long-living data. ejabberd is very flexible:
you can configure different authentication methods for different virtual hosts, you can configure
different authentication mechanisms for the same virtual host (fallback), you can set different
storage systems for modules, and so forth.

The following databases are supported by ejabberd:

• Microsoft SQL Server19

• Mnesia20

• MySQL21

• Any ODBC compatible database22

19http://www.microsoft.com/sql/
20http://www.erlang.org/doc/doc-5.5.1/lib/mnesia-4.3.2/doc/
21http://mysql.com/
22http://en.wikipedia.org/wiki/Open Database Connectivity

http://www.microsoft.com/sql/
http://www.erlang.org/doc/doc-5.5.1/lib/mnesia-4.3.2/doc/
http://mysql.com/
http://en.wikipedia.org/wiki/Open_Database_Connectivity

34 3. Configuring ejabberd

• PostgreSQL23

The following LDAP servers are tested with ejabberd:

• Active Directory24 (see section 3.2.5)

• OpenLDAP25

• Normally any LDAP compatible server should work; inform us about your success with a
not-listed server so that we can list it here.

3.2.1 MySQL

Although this section will describe ejabberd’s configuration when you want to use the native
MySQL driver, it does not describe MySQL’s installation and database creation. Check the
MySQL documentation and the tutorial Using ejabberd with MySQL native driver26 for infor-
mation regarding these topics. Note that the tutorial contains information about ejabberd’s
configuration which is duplicate to this section.

Moreover, the file mysql.sql in the directory src/odbc might be interesting for you. This file
contains the ejabberd schema for MySQL. At the end of the file you can find information to
update your database schema.

By default ejabberd opens 10 connections to the database for each virtual host. Use this option
to modify the value:

{odbc_pool_size, 10}.

You can configure an interval to make a dummy SQL request to keep alive the connections to
the database. The default value is ’undefined’, so no keepalive requests are made. Specify in
seconds: for example 28800 means 8 hours.

{odbc_keepalive_interval, undefined}.

Driver Compilation

You can skip this step if you installed ejabberd using a binary installer or if the binary packages
of ejabberd you are using include support for MySQL.

1. First, install the Erlang MySQL library27. Make sure the compiled files are in your Erlang
path; you can put them for example in the same directory as your ejabberd .beam files.

23http://www.postgresql.org/
24http://www.microsoft.com/activedirectory/
25http://www.openldap.org/
26http://support.process-one.net/doc/display/MESSENGER/Using+ejabberd+with+MySQL+native+driver
27http://support.process-one.net/doc/display/CONTRIBS/Yxa

http://www.postgresql.org/
http://www.microsoft.com/activedirectory/
http://www.openldap.org/
http://support.process-one.net/doc/display/MESSENGER/Using+ejabberd+with+MySQL+native+driver
http://support.process-one.net/doc/display/CONTRIBS/Yxa

3.2 Database and LDAP Configuration 35

2. Then, configure and install ejabberd with ODBC support enabled (this is also needed for
native MySQL support!). This can be done, by using next commands:

./configure --enable-odbc && make install

Authentication

The option value name may be misleading, as the auth method name is used for access to a
relational database through ODBC, as well as through the native MySQL interface. Anyway,
the first configuration step is to define the odbc auth method. For example:

{host_config, "public.example.org", [{auth_method, [odbc]}]}.

The actual database access is defined in the option odbc server. Its value is used to define if
we want to use ODBC, or one of the two native interface available, PostgreSQL or MySQL.

To use the native MySQL interface, you can pass a tuple of the following form as parameter:

{mysql, "Server", "Database", "Username", "Password"}

mysql is a keyword that should be kept as is. For example:

{odbc_server, {mysql, "localhost", "test", "root", "password"}}.

Optionally, it is possible to define the MySQL port to use. This option is only useful, in very rare
cases, when you are not running MySQL with the default port setting. The mysql parameter
can thus take the following form:

{mysql, "Server", Port, "Database", "Username", "Password"}

The Port value should be an integer, without quotes. For example:

{odbc_server, {mysql, "localhost", Port, "test", "root", "password"}}.

Storage

MySQL also can be used to store information into from several ejabberd modules. See sec-
tion 3.3.1 to see which modules have a version with the ‘ odbc’. This suffix indicates that the
module can be used with relational databases like MySQL. To enable storage to your database,
just make sure that your database is running well (see previous sections), and replace the suffix-
less or ldap module variant with the odbc module variant. Keep in mind that you cannot have
several variants of the same module loaded!

36 3. Configuring ejabberd

3.2.2 Microsoft SQL Server

Although this section will describe ejabberd’s configuration when you want to use Microsoft SQL
Server, it does not describe Microsoft SQL Server’s installation and database creation. Check
the MySQL documentation and the tutorial Using ejabberd with MySQL native driver28 for
information regarding these topics. Note that the tutorial contains information about ejabberd’s
configuration which is duplicate to this section.

Moreover, the file mssql.sql in the directory src/odbc might be interesting for you. This file
contains the ejabberd schema for Microsoft SQL Server. At the end of the file you can find
information to update your database schema.

By default ejabberd opens 10 connections to the database for each virtual host. Use this option
to modify the value:

{odbc_pool_size, 10}.

You can configure an interval to make a dummy SQL request to keep alive the connections to
the database. The default value is ’undefined’, so no keepalive requests are made. Specify in
seconds: for example 28800 means 8 hours.

{odbc_keepalive_interval, undefined}.

Driver Compilation

You can skip this step if you installed ejabberd using a binary installer or if the binary packages
of ejabberd you are using include support for ODBC.

If you want to use Microsoft SQL Server with ODBC, you need to configure, compile and install
ejabberd with support for ODBC and Microsoft SQL Server enabled. This can be done, by
using next commands:

./configure --enable-odbc --enable-mssql && make install

Authentication

The configuration of Microsoft SQL Server is the same as the configuration of ODBC compatible
servers (see section 3.2.4).

28http://support.process-one.net/doc/display/MESSENGER/Using+ejabberd+with+MySQL+native+driver

http://support.process-one.net/doc/display/MESSENGER/Using+ejabberd+with+MySQL+native+driver

3.2 Database and LDAP Configuration 37

Storage

Microsoft SQL Server also can be used to store information into from several ejabberd modules.
See section 3.3.1 to see which modules have a version with the ‘ odbc’. This suffix indicates that
the module can be used with relational databases like Microsoft SQL Server. To enable storage
to your database, just make sure that your database is running well (see previous sections), and
replace the suffix-less or ldap module variant with the odbc module variant. Keep in mind that
you cannot have several variants of the same module loaded!

3.2.3 PostgreSQL

Although this section will describe ejabberd’s configuration when you want to use the native
PostgreSQL driver, it does not describe PostgreSQL’s installation and database creation. Check
the PostgreSQL documentation and the tutorial Using ejabberd with MySQL native driver29 for
information regarding these topics. Note that the tutorial contains information about ejabberd’s
configuration which is duplicate to this section.

Also the file pg.sql in the directory src/odbc might be interesting for you. This file contains the
ejabberd schema for PostgreSQL. At the end of the file you can find information to update your
database schema.

By default ejabberd opens 10 connections to the database for each virtual host. Use this option
to modify the value:

{odbc_pool_size, 10}.

You can configure an interval to make a dummy SQL request to keep alive the connections to
the database. The default value is ’undefined’, so no keepalive requests are made. Specify in
seconds: for example 28800 means 8 hours.

{odbc_keepalive_interval, undefined}.

Driver Compilation

You can skip this step if you installed ejabberd using a binary installer or if the binary packages
of ejabberd you are using include support for PostgreSQL.

1. First, install the Erlang pgsql library from ejabberd-modules SVN repository30. Make sure
the compiled files are in your Erlang path; you can put them for example in the same
directory as your ejabberd .beam files.

2. Then, configure, compile and install ejabberd with ODBC support enabled (this is also
needed for native PostgreSQL support!). This can be done, by using next commands:

./configure --enable-odbc && make install

29http://support.process-one.net/doc/display/MESSENGER/Using+ejabberd+with+MySQL+native+driver
30http://www.ejabberd.im/ejabberd-modules/

http://support.process-one.net/doc/display/MESSENGER/Using+ejabberd+with+MySQL+native+driver
http://www.ejabberd.im/ejabberd-modules/

38 3. Configuring ejabberd

Authentication

The option value name may be misleading, as the auth method name is used for access to a
relational database through ODBC, as well as through the native PostgreSQL interface. Anyway,
the first configuration step is to define the odbc auth method. For example:

{host_config, "public.example.org", [{auth_method, [odbc]}]}.

The actual database access is defined in the option odbc server. Its value is used to define if
we want to use ODBC, or one of the two native interface available, PostgreSQL or MySQL.

To use the native PostgreSQL interface, you can pass a tuple of the following form as parameter:

{pgsql, "Server", "Database", "Username", "Password"}

pgsql is a keyword that should be kept as is. For example:

{odbc_server, {pgsql, "localhost", "database", "ejabberd", "password"}}.

Optionally, it is possible to define the PostgreSQL port to use. This option is only useful, in
very rare cases, when you are not running PostgreSQL with the default port setting. The pgsql
parameter can thus take the following form:

{pgsql, "Server", Port, "Database", "Username", "Password"}

The Port value should be an integer, without quotes. For example:

{odbc_server, {pgsql, "localhost", 5432, "database", "ejabberd", "password"}}.

Storage

PostgreSQL also can be used to store information into from several ejabberd modules. See
section 3.3.1 to see which modules have a version with the ‘ odbc’. This suffix indicates that
the module can be used with relational databases like PostgreSQL. To enable storage to your
database, just make sure that your database is running well (see previous sections), and replace
the suffix-less or ldap module variant with the odbc module variant. Keep in mind that you
cannot have several variants of the same module loaded!

3.2 Database and LDAP Configuration 39

3.2.4 ODBC Compatible

Although this section will describe ejabberd’s configuration when you want to use the ODBC
driver, it does not describe the installation and database creation of your database. Check the
documentation of your database. The tutorial Using ejabberd with MySQL native driver31 also
can help you. Note that the tutorial contains information about ejabberd’s configuration which
is duplicate to this section.

By default ejabberd opens 10 connections to the database for each virtual host. Use this option
to modify the value:

{odbc_pool_size, 10}.

You can configure an interval to make a dummy SQL request to keep alive the connections to
the database. The default value is ’undefined’, so no keepalive requests are made. Specify in
seconds: for example 28800 means 8 hours.

{odbc_keepalive_interval, undefined}.

Driver Compilation

You can skip this step if you installed ejabberd using a binary installer or if the binary packages
of ejabberd you are using include support for ODBC.

1. First, install the Erlang MySQL library32. Make sure the compiled files are in your Erlang
path; you can put them for example in the same directory as your ejabberd .beam files.

2. Then, configure, compile and install ejabberd with ODBC support enabled. This can be
done, by using next commands:

./configure --enable-odbc && make install

Authentication

The first configuration step is to define the odbc auth method. For example:

{host_config, "public.example.org", [{auth_method, [odbc]}]}.

The actual database access is defined in the option odbc server. Its value is used to defined if
we want to use ODBC, or one of the two native interface available, PostgreSQL or MySQL.

To use a relational database through ODBC, you can pass the ODBC connection string as
odbc server parameter. For example:

{odbc_server, "DSN=database;UID=ejabberd;PWD=password"}.

31http://support.process-one.net/doc/display/MESSENGER/Using+ejabberd+with+MySQL+native+driver
32http://support.process-one.net/doc/display/CONTRIBS/Yxa

http://support.process-one.net/doc/display/MESSENGER/Using+ejabberd+with+MySQL+native+driver
http://support.process-one.net/doc/display/CONTRIBS/Yxa

40 3. Configuring ejabberd

Storage

An ODBC compatible database also can be used to store information into from several ejabberd
modules. See section 3.3.1 to see which modules have a version with the ‘ odbc’. This suffix
indicates that the module can be used with ODBC compatible relational databases. To enable
storage to your database, just make sure that your database is running well (see previous sec-
tions), and replace the suffix-less or ldap module variant with the odbc module variant. Keep in
mind that you cannot have several variants of the same module loaded!

3.2.5 LDAP

ejabberd has built-in LDAP support. You can authenticate users against LDAP server and use
LDAP directory as vCard storage. Shared rosters are not supported yet.

Connection

Parameters:

ldap server IP address or dns name of your LDAP server. This option is required.

ldap port Port to connect to your LDAP server. The initial default value is 389, so it is used
when nothing is set into the configuration file. If you configure a value, it is stored in
ejabberd’s database. Then, if you remove that value from the configuration file, the value
previously stored in the database will be used instead of the default 389.

ldap rootdn Bind DN. The default value is "" which means ‘anonymous connection’.

ldap password Bind password. The default value is "".

Example:

{auth_method, ldap}.
{ldap_servers, ["ldap.example.org"]}.
{ldap_port, 389}.
{ldap_rootdn, "cn=Manager,dc=domain,dc=org"}.
{ldap_password, "secret"}.

Note that current LDAP implementation does not support SSL secured communication and
SASL authentication.

Authentication

You can authenticate users against an LDAP directory. Available options are:

ldap base LDAP base directory which stores users accounts. This option is required.

3.2 Database and LDAP Configuration 41

ldap uids LDAP attribute which holds a list of attributes to use as alternatives for getting the
JID. The value is of the form: [{ldap uidattr}] or [{ldap uidattr, ldap uidattr format}].
You can use as many comma separated tuples {ldap uidattr, ldap uidattr format}
that is needed. The default value is [{"uid", "%u"}]. The defaut ldap uidattr format
is "%u". The values for ldap uidattr and ldap uidattr format are described as follow:

ldap uidattr LDAP attribute which holds the user’s part of a JID. The default value is
"uid".

ldap uidattr format Format of the ldap uidattr variable. The format must contain
one and only one pattern variable "%u" which will be replaced by the user’s part of a
JID. For example, "%u@example.org". The default value is "%u".

ldap filter RFC 225433 LDAP filter. The default is none. Example: "(&(objectClass=shadowAccount)(memberOf=Jabber
Users))". Please, do not forget to close brackets and do not use superfluous whitespaces.
Also you must not use ldap uidattr attribute in filter because this attribute will be sub-
stituted in LDAP filter automatically.

Examples

Common example Let’s say ldap.example.org is the name of our LDAP server. We have
users with their passwords in "ou=Users,dc=example,dc=org" directory. Also we have address-
book, which contains users emails and their additional infos in "ou=AddressBook,dc=example,dc=org"
directory. Corresponding authentication section should looks like this:

%% authentication method
{auth_method, ldap}.
%% DNS name of our LDAP server
{ldap_servers, ["ldap.example.org"]}.
%% Bind to LDAP server as "cn=Manager,dc=example,dc=org" with password "secret"
{ldap_rootdn, "cn=Manager,dc=example,dc=org"}.
{ldap_password, "secret"}.
%% define the user’s base
{ldap_base, "ou=Users,dc=example,dc=org"}.
%% We want to authorize users from ’shadowAccount’ object class only
{ldap_filter, "(objectClass=shadowAccount)"}.

Now we want to use users LDAP-info as their vCards. We have four attributes defined in our
LDAP schema: "mail" — email address, "givenName" — first name, "sn" — second name,
"birthDay" — birthday. Also we want users to search each other. Let’s see how we can set it
up:

{modules,
...
{mod_vcard_ldap,
[

33http://www.faqs.org/rfcs/rfc2254.html

http://www.faqs.org/rfcs/rfc2254.html

42 3. Configuring ejabberd

%% We use the same server and port, but want to bind anonymously because
%% our LDAP server accepts anonymous requests to
%% "ou=AddressBook,dc=example,dc=org" subtree.
{ldap_rootdn, ""},
{ldap_password, ""},
%% define the addressbook’s base
{ldap_base, "ou=AddressBook,dc=example,dc=org"},
%% uidattr: user’s part of JID is located in the "mail" attribute
%% uidattr_format: common format for our emails
{ldap_uids, [{"mail", "%u@mail.example.org"}]},
%% We have to define empty filter here, because entries in addressbook does not
%% belong to shadowAccount object class
{ldap_filter, ""},
%% Now we want to define vCard pattern
{ldap_vcard_map,
[{"NICKNAME", "%u", []}, % just use user’s part of JID as his nickname
{"GIVEN", "%s", ["givenName"]},
{"FAMILY", "%s", ["sn"]},
{"FN", "%s, %s", ["sn", "givenName"]}, % example: "Smith, John"
{"EMAIL", "%s", ["mail"]},
{"BDAY", "%s", ["birthDay"]}]},

%% Search form
{ldap_search_fields,
[{"User", "%u"},
{"Name", "givenName"},
{"Family Name", "sn"},
{"Email", "mail"},
{"Birthday", "birthDay"}]},

%% vCard fields to be reported
%% Note that JID is always returned with search results
{ldap_search_reported,
[{"Full Name", "FN"},
{"Nickname", "NICKNAME"},
{"Birthday", "BDAY"}]}

]},
...

}.

Note that mod vcard ldap module checks for the existence of the user before searching in his
information in LDAP.

Active Directory Active Directory is just an LDAP-server with predefined attributes. A
sample configuration is shown below:

{auth_method, ldap}.
{ldap_servers, ["office.org"]}. % List of LDAP servers
{ldap_base, "DC=office,DC=org"}. % Search base of LDAP directory

3.2 Database and LDAP Configuration 43

{ldap_rootdn, "CN=Administrator,CN=Users,DC=office,DC=org"}. % LDAP manager
{ldap_password, "*******"}. % Password to LDAP manager
{ldap_uids, [{"sAMAccountName"}]}.
{ldap_filter, "(memberOf=*)"}.

{modules,
...
{mod_vcard_ldap,
[{ldap_vcard_map,
[{"NICKNAME", "%u", []},
{"GIVEN", "%s", ["givenName"]},
{"MIDDLE", "%s", ["initials"]},
{"FAMILY", "%s", ["sn"]},
{"FN", "%s", ["displayName"]},
{"EMAIL", "%s", ["mail"]},
{"ORGNAME", "%s", ["company"]},
{"ORGUNIT", "%s", ["department"]},
{"CTRY", "%s", ["c"]},
{"LOCALITY", "%s", ["l"]},
{"STREET", "%s", ["streetAddress"]},
{"REGION", "%s", ["st"]},
{"PCODE", "%s", ["postalCode"]},
{"TITLE", "%s", ["title"]},
{"URL", "%s", ["wWWHomePage"]},
{"DESC", "%s", ["description"]},
{"TEL", "%s", ["telephoneNumber"]}]},

{ldap_search_fields,
[{"User", "%u"},
{"Name", "givenName"},
{"Family Name", "sn"},
{"Email", "mail"},
{"Company", "company"},
{"Department", "department"},
{"Role", "title"},
{"Description", "description"},
{"Phone", "telephoneNumber"}]},

{ldap_search_reported,
[{"Full Name", "FN"},
{"Nickname", "NICKNAME"},
{"Email", "EMAIL"}]}

]},
...

}.

44 3. Configuring ejabberd

3.3 Modules Configuration

The option modules defines the list of modules that will be loaded after ejabberd’s startup.
Each entry in the list is a tuple in which the first element is the name of a module and the
second is a list of options for that module.

Examples:

• In this example only the module mod echo is loaded and no module options are specified
between the square brackets:

{modules,
[{mod_echo, []}
]}.

• In the second example the modules mod echo, mod time, and mod version are loaded
without options. Remark that, besides the last entry, all entries end with a comma:

{modules,
[{mod_echo, []},
{mod_time, []},
{mod_version, []}

]}.

3.3.1 Overview

The following table lists all modules included in ejabberd.

3.3 Modules Configuration 45

Module Feature Dependencies Needed for XMPP?
mod adhoc Ad-Hoc Commands (XEP-005034) No
mod announce Manage announcements mod adhoc No
mod caps Request and cache Entity Capabilities (XEP-011535) No
mod configure Server configuration using Ad-Hoc mod adhoc No
mod disco Service Discovery (XEP-003036) No
mod echo Echoes Jabber packets No
mod irc IRC transport No
mod last Last Activity (XEP-001237) No
mod last odbc Last Activity (XEP-001238) supported database (*) No
mod muc Multi-User Chat (XEP-004539) No
mod muc log Multi-User Chat room logging mod muc No
mod offline Offline message storage No
mod offline odbc Offline message storage supported database (*) No
mod privacy Blocking Communications Yes
mod privacy odbc Blocking Communications supported database (*) Yes
mod private Private XML Storage (XEP-004940) No
mod private odbc Private XML Storage (XEP-004941) supported database (*) No
mod proxy65 SOCKS5 Bytestreams (XEP-006542) No
mod pubsub Publish-Subscribe (XEP-006043) and PEP (XEP-016344) mod caps No
mod register In-Band Registration (XEP-007745) No
mod roster Roster management Yes (**)
mod roster odbc Roster management supported database (*) Yes (**)
mod service log Copy user messages to logger service No
mod shared roster Shared roster management mod roster or No

mod roster odbc
mod stats Statistics Gathering (XEP-003946) No
mod time Entity Time (XEP-009047) No
mod vcard vcard-temp (XEP-005448) No
mod vcard ldap vcard-temp (XEP-005449) LDAP server No
mod vcard odbc vcard-temp (XEP-005450) supported database (*) No
mod version Software Version (XEP-009251) No

• (*) For a list of supported databases, see section 3.2.

• (**) This module or a similar one with another database backend is needed for XMPP
compliancy.

You can see which database backend each module needs by looking at the suffix:

• No suffix, this means that the modules uses Erlang’s built-in database Mnesia as backend.

• ‘ odbc’, this means that the module needs a supported database (see 3.2) as backend.

• ‘ ldap’, this means that the module needs an LDAP server as backend.

If you want to, it is possible to use a relational database to store pieces of information. You can
do this by changing the module name to a name with an odbc suffix in ejabberd config file.
You can use a relational database for the following data:

46 3. Configuring ejabberd

• Last connection date and time: Use mod last odbc instead of mod last.

• Offline messages: Use mod offline odbc instead of mod offline.

• Rosters: Use mod roster odbc instead of mod roster.

• Users’ VCARD: Use mod vcard odbc instead of mod vcard.

• Private XML storage: Use mod private odbc instead of mod private.

• User rules for blocking communications: Use mod privacy odbc instead of mod privacy.

You can find more contributed modules52 on the ejabberd website. Please remember that these
contributions might not work or that they can contain severe bugs and security leaks. Therefore,
use them at your own risk!

3.3.2 Common Options

The following options are used by many modules. Therefore, they are described in this separate
section.

iqdisc

Many modules define handlers for processing IQ queries of different namespaces to this server
or to a user (e. g. to example.org or to user@example.org). This option defines processing
discipline for these queries. Possible values are:

no queue All queries of a namespace with this processing discipline are processed immediately.
This also means that no other packets can be processed until this one has been completely
processed. Hence this discipline is not recommended if the processing of a query can take
a relatively long time.

one queue In this case a separate queue is created for the processing of IQ queries of a namespace
with this discipline. In addition, the processing of this queue is done in parallel with that
of other packets. This discipline is most recommended.

parallel For every packet with this discipline a separate Erlang process is spawned. Conse-
quently, all these packets are processed in parallel. Although spawning of Erlang process
has a relatively low cost, this can break the server’s normal work, because the Erlang
emulator has a limit on the number of processes (32000 by default).

Example:

{modules,
[
...
{mod_time, [{iqdisc, no_queue}]},
...
]}.

52http://www.ejabberd.im/contributions

http://www.ejabberd.im/contributions

3.3 Modules Configuration 47

host

This option defines the Jabber ID of a service provided by an ejabberd module. The keyword
”@HOST@” is replaced at start time with the real virtual host string.

This example configures the echo module to provide its echoing service in the Jabber ID mirror.example.org:

{modules,
[
...
{mod_echo, [{host, "mirror.example.org"}]},
...
]}.

However, if there are several virtual hosts and this module is enabled in all of them, the
”@HOST@” keyword must be used:

{modules,
[
...
{mod_echo, [{host, "mirror.@HOST@"}]},
...
]}.

3.3.3 mod announce

This module enables configured users to broadcast announcements and to set the message of
the day (MOTD). Configured users can do these actions with their Jabber client using Ad-hoc
commands or by sending messages to specific JIDs. These JIDs are listed in next paragraph. The
first JID in each entry will apply only to the virtual host example.org, while the JID between
brackets will apply to all virtual hosts:

example.org/announce/all (example.org/announce/all-hosts/all) The message is sent to
all registered users. If the user is online and connected to several resources, only the resource
with the highest priority will receive the message. If the registered user is not connected,
the message will be stored offline in assumption that offline storage (see section 3.3.12) is
enabled.

example.org/announce/online (example.org/announce/all-hosts/online) The message is
sent to all connected users. If the user is online and connected to several resources, all re-
sources will receive the message.

example.org/announce/motd (example.org/announce/all-hosts/motd) The message is set
as the message of the day (MOTD) and is sent to users when they login. In addition the
message is sent to all connected users (similar to announce/online).

48 3. Configuring ejabberd

example.org/announce/motd/update (example.org/announce/all-hosts/motd/update) The
message is set as message of the day (MOTD) and is sent to users when they login. The
message is not sent to any currently connected user.

example.org/announce/motd/delete (example.org/announce/all-hosts/motd/delete) Any
message sent to this JID removes the existing message of the day (MOTD).

Options:

access This option specifies who is allowed to send announcements and to set the message of
the day (by default, nobody is able to send such messages).

Examples:

• Only administrators can send announcements:

{access, announce, [{allow, admins}]}.

{modules,
[
...
{mod_announce, [{access, announce}]},
...

]}.

• Administrators as well as the direction can send announcements:

{acl, direction, {user, "big_boss", "example.org"}}.
{acl, direction, {user, "assistant", "example.org"}}.
{acl, admins, {user, "admin", "example.org"}}.
...
{access, announce, [{allow, admins},

{allow, direction}]}.
...
{modules,
[
...
{mod_announce, [{access, announce}]},
...

]}.

Note that mod announce can be resource intensive on large deployments as it can broadcast lot of
messages. This module should be disabled for instances of ejabberd with hundreds of thousands
users.

3.3 Modules Configuration 49

3.3.4 mod disco

This module adds support for Service Discovery (XEP-003053). With this module enabled,
services on your server can be discovered by Jabber clients. Note that ejabberd has no mod-
ules with support for the superseded Jabber Browsing (XEP-001154) and Agent Information
(XEP-009455). Accordingly, Jabber clients need to have support for the newer Service Discovery
protocol if you want them be able to discover the services you offer.

Options:

iqdisc This specifies the processing discipline for Service Discovery (http://jabber.org/protocol/disco#items
and http://jabber.org/protocol/disco#info) IQ queries (see section 3.3.2).

extra domains With this option, extra domains can be added to the Service Discovery item list.

Examples:

• To serve a link to the Jabber User Directory on jabber.org:

{modules,
[
...
{mod_disco, [{extra_domains, ["users.jabber.org"]}]},
...

]}.

• To serve a link to the transports on another server:

{modules,
[
...
{mod_disco, [{extra_domains, ["icq.example.com",

"msn.example.com"]}]},
...

]}.

• To serve a link to a few friendly servers:

{modules,
[
...
{mod_disco, [{extra_domains, ["example.org",

"example.com"]}]},
...

]}.

53http://www.xmpp.org/extensions/xep-0030.html
54http://www.xmpp.org/extensions/xep-0011.html
55http://www.xmpp.org/extensions/xep-0094.html

http://www.xmpp.org/extensions/xep-0030.html
http://www.xmpp.org/extensions/xep-0011.html
http://www.xmpp.org/extensions/xep-0094.html

50 3. Configuring ejabberd

3.3.5 mod echo

This module simply echoes any Jabber packet back to the sender. This mirror can be of interest
for ejabberd and Jabber client debugging.

Options:

host This option defines the Jabber ID of the service. If the host option is not specified, the
Jabber ID will be the hostname of the virtual host with the prefix ‘echo.’. The keyword
”@HOST@” is replaced at start time with the real virtual host name.

Example: Mirror, mirror, on the wall, who is the most beautiful of them all?

{modules,
[
...
{mod_echo, [{host, "mirror.example.org"}]},
...
]}.

3.3.6 mod http bind

This module implements XMPP over Bosh (formerly known as HTTP Binding) as outlined by
XEP-020656. It extends ejabberd’s built in HTTP service with a configurable resource at which
this service will be hosted.

To use HTTP-Binding, enable the module:

{modules,
[
...
{mod_http_bind, []},
...

]}.

and add http_bind in the HTTP service. For example:

{listen,
[
...
{5280, ejabberd_http, [

http_bind,
http_poll,
web_admin

56http://www.xmpp.org/extensions/xep-0206.html

http://www.xmpp.org/extensions/xep-0206.html

3.3 Modules Configuration 51

]
},
...

]}.

With this configuration, the module will serve the requests sent to http://example.org:5280/http-bind/
Remember that this page is not designed to be used by web browsers, it is used by Jabber clients
that support XMPP over Bosh.

If you want to set the service in a different URI path or use a different module, you can configure
it manually using the option request_handlers. For example:

{listen,
[
...
{5280, ejabberd_http, [

{request_handlers, [{["http-bind"], mod_http_bind}]},
http_poll,
web_admin
]

},
...

]}.

3.3.7 mod http fileserver

This simple module serves files from the local disk over HTTP.

Options:

docroot Directory to serve the files.

accesslog File to log accesses using an Apache-like format. No log will be recorded if this
option is not specified.

This example configuration will serve the files from the local directory /var/www in the address
http://example.org:5280/pub/archive/. To use this module you must enable it:

{modules,
[
...
{mod_http_fileserver, [

{docroot, "/var/www"},
{accesslog, "/var/log/ejabberd/access.log"}
]

},
...

]}.

52 3. Configuring ejabberd

And define it as a handler in the HTTP service:

{listen,
[
...
{5280, ejabberd_http, [

...
{request_handlers, [

...
{["pub", "archive"], mod_http_fileserver},
...
]

},
...
]

},
...

]}.

3.3.8 mod irc

This module is an IRC transport that can be used to join channels on IRC servers.

End user information:

• A Jabber client with ‘groupchat 1.0’ support or Multi-User Chat support (XEP-004557) is
necessary to join IRC channels.

• An IRC channel can be joined in nearly the same way as joining a Jabber Multi-User Chat
room. The difference is that the room name will be ‘channel%irc.example.org’ in case
irc.example.org is the IRC server hosting ‘channel’. And of course the host should point
to the IRC transport instead of the Multi-User Chat service.

• You can register your nickame by sending ‘IDENTIFY password’ to
nickserver!irc.example.org@irc.jabberserver.org.

• Entering your password is possible by sending ‘LOGIN nick password’
to nickserver!irc.example.org@irc.jabberserver.org.

• When using a popular Jabber server, it can occur that no connection can be achieved with
some IRC servers because they limit the number of conections from one IP.

Options:

host This option defines the Jabber ID of the service. If the host option is not specified, the
Jabber ID will be the hostname of the virtual host with the prefix ‘irc.’. The keyword
”@HOST@” is replaced at start time with the real virtual host name.

57http://www.xmpp.org/extensions/xep-0045.html

http://www.xmpp.org/extensions/xep-0045.html

3.3 Modules Configuration 53

access This option can be used to specify who may use the IRC transport (default value: all).

default encoding Set the default IRC encoding (default value: "koi8-r").

Examples:

• In the first example, the IRC transport is available on (all) your virtual host(s) with the
prefix ‘irc.’. Furthermore, anyone is able to use the transport. The default encoding is
set to ”iso8859-15”.

{modules,
[
...
{mod_irc, [{access, all}, {default_encoding, "iso8859-15"}]},
...

]}.

• In next example the IRC transport is available with JIDs with prefix irc-t.net. Moreover,
the transport is only accessible by paying customers registered on our domains and on other
servers.

{acl, paying_customers, {user, "customer1", "example.net"}}.
{acl, paying_customers, {user, "customer2", "example.com"}}.
{acl, paying_customers, {user, "customer3", "example.org"}}.
...
{access, paying_customers, [{allow, paying_customers},

{deny, all}]}.
...
{modules,
[
...
{mod_irc, [{access, paying_customers},

{host, "irc.example.net"}]},
...

]}.

3.3.9 mod last

This module adds support for Last Activity (XEP-001258). It can be used to discover when a
disconnected user last accessed the server, to know when a connected user was last active on the
server, or to query the uptime of the ejabberd server.

Options:

iqdisc This specifies the processing discipline for Last activity (jabber:iq:last) IQ queries
(see section 3.3.2).

58http://www.xmpp.org/extensions/xep-0012.html

http://www.xmpp.org/extensions/xep-0012.html

54 3. Configuring ejabberd

3.3.10 mod muc

With this module enabled, your server will support Multi-User Chat (XEP-004559). End users
will be able to join text conferences.

Some of the features of Multi-User Chat:

• Sending private messages to room participants.

• Inviting users.

• Setting a conference topic.

• Creating password protected rooms.

• Kicking and banning participants.

The MUC service allows any Jabber ID to register a nickname, so nobody else can use that
nickname in any room in the MUC service. To register a nickname, open the Service Discovery
in your Jabber client and Register in the MUC service.

The MUC service allows the service administrator to send a message to all existing chatrooms.
To do so, send the message to the Jabber ID of the MUC service.

This module supports clustering and load balancing. One module can be started per cluster
node. Rooms are distributed at creation time on all available MUC module instances. The
multi-user chat module is clustered but the room themselves are not clustered nor fault-tolerant:
if the node managing a set of rooms goes down, the rooms disappear and they will be recreated
on an available node on first connection attempt.

Options:

host This option defines the Jabber ID of the service. If the host option is not specified, the
Jabber ID will be the hostname of the virtual host with the prefix ‘conference.’. The
keyword ”@HOST@” is replaced at start time with the real virtual host name.

access You can specify who is allowed to use the Multi-User Chat service (by default, everyone
is allowed to use it).

access create To configure who is allowed to create new rooms at the Multi-User Chat service,
this option can be used (by default, everybody is allowed to create rooms).

access persistent To configure who is allowed to modify the ’persistent’ chatroom option (by
default, everybody is allowed to modify that option).

access admin This option specifies who is allowed to administrate the Multi-User Chat service
(the default value is none, which means that only the room creator can administer his
room). By sending a message to the service JID, administrators can send service messages
that will be displayed in every active room.

59http://www.xmpp.org/extensions/xep-0045.html

http://www.xmpp.org/extensions/xep-0045.html

3.3 Modules Configuration 55

history size A small history of the current discussion is sent to users when they enter the
room. With this option you can define the number of history messages to keep and send to
users joining the room. The value is an integer. Setting the value to 0 disables the history
feature and, as a result, nothing is kept in memory. The default value is 20. This value is
global and thus affects all rooms on the server.

max users This option defines at the server level, the maximum number of users allowed per
MUC room. It can be lowered in each room configuration but cannot be increased in
individual MUC room configuration. The default value is 200.

max users admin threshold This option defines the number of MUC admins or owners to allow
to enter the room even if the maximum number of allowed users is reached. The default
limits is 5. In most cases this default value is the best setting.

max user conferences This option define the maximum number of chat room any given user
will be able to join. The default is 10. This option is used to prevent possible abuses.
Note that this is a soft limits: Some users can sometime join more conferences in cluster
configurations.

min message interval This option defines the minimum interval between two messages send
by a user in seconds. This option is global and valid for all chat rooms. A decimal value
can be used. When this option is not defined, message rate is not limited. This feature can
be used to protect a MUC service from users abuses and limit number of messages that
will be broadcasted by the service. A good value for this minimum message interval is 0.4
second. If a user tries to send messages faster, an error is send back explaining that the
message have been discarded and describing the reason why the message is not acceptable.

min presence interval This option defines the minimum of time between presence changes
coming from a given user in seconds. This option is global and valid for all chat rooms. A
decimal value can be used. When this option is not defined, no restriction is applied. This
option can be used to protect a MUC service for users abuses, as fastly changing a user
presence will result in possible large presence packet broadcast. If a user tries to change its
presence more often than the specified interval, the presence is cached by ejabberd and
only the last presence is broadcasted to all users in the room after expiration of the interval
delay. Intermediate presence packets are silently discarded. A good value for this option
is 4 seconds.

default room opts This option allow to define the desired default room options. Obviously, the
room creator can modify the room options at any time. The available room options are:
allow change subj, allow private messages, allow query users, allow user invites,
anonymous, logging, members by default, members only, moderated, password, password protected,
persistent, public, public list, title. All of them can be set to true or false, except
password and title which are strings.

Examples:

• In the first example everyone is allowed to use the Multi-User Chat service. Everyone
will also be able to create new rooms but only the user admin@example.org is allowed
to administrate any room. In this example he is also a global administrator. When
admin@example.org sends a message such as ‘Tomorrow, the Jabber server will be moved
to new hardware. This will involve service breakdowns around 23:00 UMT. We apologise

56 3. Configuring ejabberd

for this inconvenience.’ to conference.example.org, it will be displayed in all active
rooms. In this example the history feature is disabled.

{acl, admins, {user, "admin", "example.org"}}.
...
{access, muc_admins, [{allow, admins}]}.
...
{modules,
[
...
{mod_muc, [{access, all},

{access_create, all},
{access_admin, muc_admins},
{history_size, 0}]},

...
]}.

• In the second example the Multi-User Chat service is only accessible by paying customers
registered on our domains and on other servers. Of course the administrator is also allowed
to access rooms. In addition, he is the only authority able to create and administer rooms.
When admin@example.org sends a message such as ‘Tomorrow, the Jabber server will be
moved to new hardware. This will involve service breakdowns around 23:00 UMT. We
apologise for this inconvenience.’ to conference.example.org, it will be displayed in all
active rooms. No history size option is used, this means that the feature is enabled and
the default value of 20 history messages will be send to the users.

{acl, paying_customers, {user, "customer1", "example.net"}}.
{acl, paying_customers, {user, "customer2", "example.com"}}.
{acl, paying_customers, {user, "customer3", "example.org"}}.
{acl, admins, {user, "admin", "example.org"}}.
...
{access, muc_admins, [{allow, admins},

{deny, all}]}.
{access, muc_access, [{allow, paying_customers},

{allow, admins},
{deny, all}]}.

...
{modules,
[
...
{mod_muc, [{access, muc_access},

{access_create, muc_admins},
{access_admin, muc_admins}]},

...
]}.

• In the following example, MUC anti abuse options are used. A user cannot send more
than one message every 0.4 seconds and cannot change its presence more than once every
4 seconds. No ACLs are defined, but some user restriction could be added as well:

3.3 Modules Configuration 57

...
{modules,
[
...
{mod_muc, [{min_message_interval, 0.4},

{min_presence_interval, 4}]},
...

]}.

• This example shows how to use default room opts to make sure newly created chatrooms
have by default those options.

{modules,
[
...
{mod_muc, [{access, muc_access},

{access_create, muc_admins},
{default_room_options, [
{allow_change_subj, false},
{allow_query_users, true},
{allow_private_messages, true},
{members_by_default, false},
{title, "New chatroom"},
{anonymous, false}

]},
{access_admin, muc_admins}]},

...
]}.

3.3.11 mod muc log

This module enables optional logging of Multi-User Chat (MUC) conversations to HTML. Once
you enable this module, users can join a chatroom using a MUC capable Jabber client, and if
they have enough privileges, they can request the configuration form in which they can set the
option to enable chatroom logging.

Features:

• Chatroom details are added on top of each page: room title, JID, author, subject and
configuration.

• Room title and JID are links to join the chatroom (using XMPP URIs60).

• Subject and chatroom configuration changes are tracked and displayed.

• Joins, leaves, nick changes, kicks, bans and ‘/me’ are tracked and displayed, including the
reason if available.

60http://www.ietf.org/rfc/rfc4622.txt

http://www.ietf.org/rfc/rfc4622.txt

58 3. Configuring ejabberd

• Generated HTML files are XHTML 1.0 Transitional and CSS compliant.

• Timestamps are self-referencing links.

• Links on top for quicker navigation: Previous day, Next day, Up.

• CSS is used for style definition, and a custom CSS file can be used.

• URLs on messages and subjects are converted to hyperlinks.

• Timezone used on timestamps is shown on the log files.

• A custom link can be added on top of each page.

Options:

access log This option restricts which users are allowed to enable or disable chatroom logging.
The default value is muc admin. Note for this default setting you need to have an access
rule for muc admin in order to take effect.

cssfile With this option you can set whether the HTML files should have a custom CSS file or if
they need to use the embedded CSS file. Allowed values are false and an URL to a CSS file.
With the first value, HTML files will include the embedded CSS code. With the latter, you
can specify the URL of the custom CSS file (for example: ‘http://example.com/my.css’).
The default value is false.

dirtype The type of the created directories can be specified with this option. Allowed values
are subdirs and plain. With the first value, subdirectories are created for each year and
month. With the latter, the names of the log files contain the full date, and there are no
subdirectories. The default value is subdirs.

outdir This option sets the full path to the directory in which the HTML files should be stored.
Make sure the ejabberd daemon user has write access on that directory. The default value
is "www/muc".

timezone The time zone for the logs is configurable with this option. Allowed values are local
and universal. With the first value, the local time, as reported to Erlang by the operating
system, will be used. With the latter, GMT/UTC time will be used. The default value is
local.

spam prevention To prevent spam, the spam prevention option adds a special attribute to
links that prevent their indexation by search engines. The default value is true, which
mean that nofollow attributes will be added to user submitted links.

top link With this option you can customize the link on the top right corner of each log file.
The syntax of this option is {"URL", "Text"}. The default value is {"/", "Home"}.

Examples:

• In the first example any chatroom owner can enable logging, and a custom CSS file
will be used (http://example.com/my.css). Further, the names of the log files will con-
tain the full date, and there will be no subdirectories. The log files will be stored in
/var/www/muclogs, and the time zone will be GMT/UTC. Finally, the top link will be
Jabber.ru.

3.3 Modules Configuration 59

{access, muc, [{allow, all}]}.
...
{modules,
[
...
{mod_muc_log, [

{access_log, muc},
{cssfile, "http://example.com/my.css"},
{dirtype, plain},
{outdir, "/var/www/muclogs"},
{timezone, universal},
{spam_prevention, true},
{top_link, {"http://www.jabber.ru", "Jabber.ru"}}

]},
...

]}.

• In the second example only admin1@example.org and admin2@example.net can enable
logging, and the embedded CSS file will be used. Further, the names of the log files will
only contain the day (number), and there will be subdirectories for each year and month.
The log files will be stored in /var/www/muclogs, and the local time will be used. Finally,
the top link will be the default Home.

{acl, admins, {user, "admin1", "example.org"}}.
{acl, admins, {user, "admin2", "example.net"}}.
...
{access, muc_log, [{allow, admins},

{deny, all}]}.
...
{modules,
[
...
{mod_muc_log, [

{access_log, muc_log},
{cssfile, false},
{dirtype, subdirs},
{outdir, "/var/www/muclogs"},
{timezone, local}

]},
...

]}.

3.3.12 mod offline

This module implements offline message storage. This means that all messages sent to an offline
user will be stored on the server until that user comes online again. Thus it is very similar
to how email works. Note that ejabberdctl has a command to delete expired messages (see
section 4.1).

60 3. Configuring ejabberd

user max messages This option is use to set a max number of offline messages per user (quota).
Its value can be either infinity or a strictly positive integer. The default value is
infinity.

3.3.13 mod privacy

This module implements Blocking Communication (also known as Privacy Rules) as defined in
section 10 from XMPP IM. If end users have support for it in their Jabber client, they will be
able to:

• Retrieving one’s privacy lists.

• Adding, removing, and editing one’s privacy lists.

• Setting, changing, or declining active lists.

• Setting, changing, or declining the default list (i.e., the list that is active by
default).

• Allowing or blocking messages based on JID, group, or subscription type (or
globally).

• Allowing or blocking inbound presence notifications based on JID, group, or
subscription type (or globally).

• Allowing or blocking outbound presence notifications based on JID, group, or
subscription type (or globally).

• Allowing or blocking IQ stanzas based on JID, group, or subscription type (or
globally).

• Allowing or blocking all communications based on JID, group, or subscription
type (or globally).

(from http://www.xmpp.org/specs/rfc3921.html#privacy)

Options:

iqdisc This specifies the processing discipline for Blocking Communication (jabber:iq:privacy)
IQ queries (see section 3.3.2).

3.3.14 mod private

This module adds support for Private XML Storage (XEP-004961):

Using this method, Jabber entities can store private data on the server and retrieve
it whenever necessary. The data stored might be anything, as long as it is valid
XML. One typical usage for this namespace is the server-side storage of client-specific
preferences; another is Bookmark Storage (XEP-004862).

61http://www.xmpp.org/extensions/xep-0049.html
62http://www.xmpp.org/extensions/xep-0048.html

http://www.xmpp.org/specs/rfc3921.html#privacy
http://www.xmpp.org/extensions/xep-0049.html
http://www.xmpp.org/extensions/xep-0048.html

3.3 Modules Configuration 61

Options:

iqdisc This specifies the processing discipline for Private XML Storage (jabber:iq:private)
IQ queries (see section 3.3.2).

3.3.15 mod proxy65

This module implements SOCKS5 Bytestreams (XEP-006563). It allows ejabberd to act as a
file transfer proxy between two XMPP clients.

Options:

host This option defines the hostname of the service. If this option is not set, the prefix ‘proxy.’
is added to ejabberd hostname.

name Defines Service Discovery name of the service. Default is "SOCKS5 Bytestreams".

ip This option specifies which network interface to listen for. Default is an IP address of the
service’s DNS name, or, if fails, {127,0,0,1}.

port This option defines port to listen for incoming connections. Default is 7777.

auth type SOCKS5 authentication type. Possible values are anonymous and plain. Default is
anonymous.

access Defines ACL for file transfer initiators. Default is all.

max connections Maximum number of active connections per file transfer initiator. No limit
by default.

shaper This option defines shaper for the file transfer peers. Shaper with the maximum band-
width will be selected. Default is none.

Examples:

• The simpliest configuration of the module:

{modules,
[
...
{mod_proxy65, []},
...

]}.

• More complicated configuration.

63http://www.xmpp.org/extensions/xep-0065.html

http://www.xmpp.org/extensions/xep-0065.html

62 3. Configuring ejabberd

{acl, proxy_users, {server, "example.org"}}.
{access, proxy65_access, [{allow, proxy_users}, {deny, all}]}.
...
{acl, admin, {user, "admin", "example.org"}}.
{shaper, normal, {maxrate, 10240}}. %% 10 Kbytes/sec
{access, proxy65_shaper, [{none, admin}, {normal, all}]}.
...
{modules,
[
...
{mod_proxy65, [{host, "proxy1.example.org"},

{name, "File Transfer Proxy"},
{ip, {200,150,100,1}},
{port, 7778},
{max_connections, 5},
{access, proxy65_access},
{shaper, proxy65_shaper}]},

...
]}.

3.3.16 mod pubsub

This module offers a Publish-Subscribe Service (XEP-006064). The functionality in mod pubsub
can be extended using plugins. The plugin that implements PEP (Personal Eventing via Pubsub)
(XEP-016365) is enabled by default, and requires mod caps.

Options:

host This option defines the Jabber ID of the service. If the host option is not specified, the
Jabber ID will be the hostname of the virtual host with the prefix ‘pubsub.’. The keyword
”@HOST@” is replaced at start time with the real virtual host name.

access createnode This option restricts which users are allowed to create pubsub nodes using
ACL and ACCESS. The default value is pubsub createnode.

plugins To specify which pubsub node plugins to use. If not defined, the default pubsub plugin
is always used.

nodetree To specify which nodetree to use. If not defined, the default pubsub nodetree is used.
Nodetrees are default and virtual. Only one nodetree can be used and is shared by all node
plugins.

Example:

{modules,
[

64http://www.xmpp.org/extensions/xep-0060.html
65http://www.xmpp.org/extensions/xep-0163.html

http://www.xmpp.org/extensions/xep-0060.html
http://www.xmpp.org/extensions/xep-0163.html

3.3 Modules Configuration 63

...
{mod_pubsub, [

{access_createnode, pubsub_createnode},
{plugins, ["default", "pep"]}
]}

...
]}.

3.3.17 mod register

This module adds support for In-Band Registration (XEP-007766). This protocol enables end
users to use a Jabber client to:

• Register a new account on the server.

• Change the password from an existing account on the server.

• Delete an existing account on the server.

Options:

access This option can be configured to specify rules to restrict registration. If a rule returns
‘deny’ on the requested user name, registration for that user name is denied. (there are no
restrictions by default).

welcome message Set a welcome message that is sent to each newly registered account. The
first string is the subject, and the second string is the message body.

registration watchers This option defines a list of JIDs which will be notified each time a
new account is registered.

iqdisc This specifies the processing discipline for In-Band Registration (jabber:iq:register)
IQ queries (see section 3.3.2).

Examples:

• Next example prohibits the registration of too short account names:

{acl, shortname, {user_glob, "?"}}.
{acl, shortname, {user_glob, "??"}}.
% The same using regexp:
%{acl, shortname, {user_regexp, "^..?$"}}.
...
{access, register, [{deny, shortname},

{allow, all}]}.
...

66http://www.xmpp.org/extensions/xep-0077.html

http://www.xmpp.org/extensions/xep-0077.html

64 3. Configuring ejabberd

{modules,
[
...
{mod_register, [{access, register}]},
...

]}.

• The in-band registration of new accounts can be prohibited by changing the access op-
tion. If you really want to disable all In-Band Registration functionality, that is changing
passwords in-band and deleting accounts in-band, you have to remove mod register from
the modules list. In this example all In-Band Registration functionality is disabled:

{access, register, [{deny, all}]}.

{modules,
[
...

% {mod_register, [{access, register}]},
...

]}.

• Define the welcome message and three registration watchers:

{modules,
[
...
{mod_register, [

{welcome_message, {"Welcome!", "Welcome to this Jabber server. For information about Jabber visit http://www.jabber.org"}},
{registration_watchers, ["admin1@example.org", "admin2@example.org", "boss@example.net"]}

]},
...

]}.

3.3.18 mod roster

This module implements roster management as defined in RFC 3921: XMPP IM67.

Options:

iqdisc This specifies the processing discipline for Roster Management (jabber:iq:roster) IQ
queries (see section 3.3.2).

67http://www.xmpp.org/specs/rfc3921.html#roster

http://www.xmpp.org/specs/rfc3921.html#roster

3.3 Modules Configuration 65

3.3.19 mod service log

This module adds support for logging end user packets via a Jabber message auditing service
such as Bandersnatch68. All user packets are encapsulated in a <route/> element and sent to
the specified service(s).

Options:

loggers With this option a (list of) service(s) that will receive the packets can be specified.

Examples:

• To log all end user packets to the Bandersnatch service running on bandersnatch.example.com:

{modules,
[
...
{mod_service_log, [{loggers, ["bandersnatch.example.com"]}]},
...

]}.

• To log all end user packets to the Bandersnatch service running on bandersnatch.example.com
and the backup service on bandersnatch.example.org:

{modules,
[
...
{mod_service_log, [{loggers, ["bandersnatch.example.com",

"bandersnatch.example.org"]}]},
...

]}.

3.3.20 mod shared roster

This module enables you to create shared roster groups. This means that you can create groups
of people that can see members from (other) groups in their rosters. The big advantages of this
feature are that end users do not need to manually add all users to their rosters, and that they
cannot permanently delete users from the shared roster groups. A shared roster group can have
members from any Jabber server, but the presence will only be available from and to members
of the same virtual host where the group is created.

Shared roster groups can be edited only via the Web Admin. Each group has a unique identifi-
cation and the following parameters:

Name The name of the group, which will be displayed in the roster.
68http://www.funkypenguin.co.za/bandersnatch/

http://www.funkypenguin.co.za/bandersnatch/

66 3. Configuring ejabberd

Description The description of the group. This parameter does not affect anything.

Members A list of full JIDs of group members, entered one per line in the Web Admin. To put
as members all the registered users in the virtual hosts, you can use the special directive:
@all@. Note that this directive is designed for a small server with just a few hundred users.

Displayed groups A list of groups that will be in the rosters of this group’s members.

Examples:

• Take the case of a computer club that wants all its members seeing each other in their
rosters. To achieve this, they need to create a shared roster group similar to next table:

Identification Group ‘club members’
Name Club Members
Description Members from the computer club

Members
member1@example.org
member2@example.org
member3@example.org

Displayed groups club members

• In another case we have a company which has three divisions: Management, Marketing
and Sales. All group members should see all other members in their rosters. Additionally,
all managers should have all marketing and sales people in their roster. Simultaneously,
all marketeers and the whole sales team should see all managers. This scenario can be
achieved by creating shared roster groups as shown in the following table:

Identification Group ‘management’ Group ‘marketing’ Group ‘sales’
Name Management Marketing Sales
Description

Members

manager1@example.org
manager2@example.org
manager3@example.org
manager4@example.org

marketeer1@example.org
marketeer2@example.org
marketeer3@example.org
marketeer4@example.org

saleswoman1@example.org
salesman1@example.org
saleswoman2@example.org
salesman2@example.org

Displayed groups
management
marketing
sales

management
marketing

management
sales

3.3.21 mod stats

This module adds support for Statistics Gathering (XEP-003969). This protocol allows you to
retrieve next statistics from your ejabberd deployment:

• Total number of registered users on the current virtual host (users/total).

69http://www.xmpp.org/extensions/xep-0039.html

http://www.xmpp.org/extensions/xep-0039.html

3.3 Modules Configuration 67

• Total number of registered users on all virtual hosts (users/all-hosts/total).

• Total number of online users on the current virtual host (users/online).

• Total number of online users on all virtual hosts (users/all-hosts/online).

Options:

iqdisc This specifies the processing discipline for Statistics Gathering (http://jabber.org/protocol/stats)
IQ queries (see section 3.3.2).

As there are only a small amount of clients (for example Tkabber70) and software libraries with
support for this XEP, a few examples are given of the XML you need to send in order to get the
statistics. Here they are:

• You can request the number of online users on the current virtual host (example.org) by
sending:

<iq to=’example.org’ type=’get’>
<query xmlns=’http://jabber.org/protocol/stats’>
<stat name=’users/online’/>

</query>
</iq>

• You can request the total number of registered users on all virtual hosts by sending:

<iq to=’example.org’ type=’get’>
<query xmlns=’http://jabber.org/protocol/stats’>
<stat name=’users/all-hosts/total’/>

</query>
</iq>

3.3.22 mod time

This module features support for Entity Time (XEP-009071). By using this XEP, you are able
to discover the time at another entity’s location.

Options:

iqdisc This specifies the processing discipline for Entity Time (jabber:iq:time) IQ queries
(see section 3.3.2).

70http://tkabber.jabber.ru/
71http://www.xmpp.org/extensions/xep-0090.html

http://tkabber.jabber.ru/
http://www.xmpp.org/extensions/xep-0090.html

68 3. Configuring ejabberd

3.3.23 mod vcard

This module allows end users to store and retrieve their vCard, and to retrieve other users
vCards, as defined in vcard-temp (XEP-005472). The module also implements an uncomplicated
Jabber User Directory based on the vCards of these users. Moreover, it enables the server to
send its vCard when queried.

Options:

host This option defines the Jabber ID of the service. If the host option is not specified, the
Jabber ID will be the hostname of the virtual host with the prefix ‘vjud.’. The keyword
”@HOST@” is replaced at start time with the real virtual host name.

iqdisc This specifies the processing discipline for vcard-temp IQ queries (see section 3.3.2).

search This option specifies whether the search functionality is enabled (value: true) or disabled
(value: false). If disabled, the option host will be ignored and the Jabber User Directory
service will not appear in the Service Discovery item list. The default value is true.

matches With this option, the number of reported search results can be limited. If the option’s
value is set to infinity, all search results are reported. The default value is 30.

allow return all This option enables you to specify if search operations with empty input
fields should return all users who added some information to their vCard. The default
value is false.

search all hosts If this option is set to true, search operations will apply to all virtual hosts.
Otherwise only the current host will be searched. The default value is true.

Examples:

• In this first situation, search results are limited to twenty items, every user who added
information to their vCard will be listed when people do an empty search, and only users
from the current host will be returned:

{modules,
[
...
{mod_vcard, [{search, true},

{matches, 20},
{allow_return_all, true},
{search_all_hosts, false}]},

...
]}.

• The second situation differs in a way that search results are not limited, and that all virtual
hosts will be searched instead of only the current one:

72http://www.xmpp.org/extensions/xep-0054.html

http://www.xmpp.org/extensions/xep-0054.html

3.3 Modules Configuration 69

{modules,
[
...
{mod_vcard, [{search, true},

{matches, infinity},
{allow_return_all, true}]},

...
]}.

3.3.24 mod vcard ldap

ejabberd can map LDAP attributes to vCard fields. This behaviour is implemented in the
mod vcard ldap module. This module does not depend on the authentication method (see 3.2.5).
The mod vcard ldap module has its own optional parameters. The first group of parameters
has the same meaning as the top-level LDAP parameters to set the authentication method:
ldap servers, ldap port, ldap rootdn, ldap password, ldap base, ldap uids, and ldap filter.
See section 3.2.5 for detailed information about these options. If one of these options is not set,
ejabberd will look for the top-level option with the same name. The second group of parameters
consists of the following mod vcard ldap-specific options:

host This option defines the Jabber ID of the service. If the host option is not specified, the
Jabber ID will be the hostname of the virtual host with the prefix ‘vjud.’. The keyword
”@HOST@” is replaced at start time with the real virtual host name.

iqdisc This specifies the processing discipline for vcard-temp IQ queries (see section 3.3.2).

search This option specifies whether the search functionality is enabled (value: true) or disabled
(value: false). If disabled, the option host will be ignored and the Jabber User Directory
service will not appear in the Service Discovery item list. The default value is true.

ldap vcard map With this option you can set the table that maps LDAP attributes to vCard
fields. The format is: [Name of vCard field, Pattern, List of LDAP attributes, ...].
Name of vcard field is the type name of the vCard as defined in RFC 242673. Pattern is
a string which contains pattern variables "%u", "%d" or "%s". List of LDAP attributes
is the list containing LDAP attributes. The pattern variables "%s" will be sequentially
replaced with the values of LDAP attributes from List of LDAP attributes, "%u" will be
replaced with the user part of a JID, and "%d" will be replaced with the domain part of a
JID. The default is:

[{"NICK", "%u", []},
{"FN", "%s", ["displayName"]},
{"LAST", "%s", ["sn"]},
{"FIRST", "%s", ["givenName"]},
{"MIDDLE", "%s", ["initials"]},
{"ORGNAME", "%s", ["o"]},
{"ORGUNIT", "%s", ["ou"]},
{"CTRY", "%s", ["c"]},

73http://www.ietf.org/rfc/rfc2426.txt

http://www.ietf.org/rfc/rfc2426.txt

70 3. Configuring ejabberd

{"LOCALITY", "%s", ["l"]},
{"STREET", "%s", ["street"]},
{"REGION", "%s", ["st"]},
{"PCODE", "%s", ["postalCode"]},
{"TITLE", "%s", ["title"]},
{"URL", "%s", ["labeleduri"]},
{"DESC", "%s", ["description"]},
{"TEL", "%s", ["telephoneNumber"]},
{"EMAIL", "%s", ["mail"]},
{"BDAY", "%s", ["birthDay"]},
{"ROLE", "%s", ["employeeType"]},
{"PHOTO", "%s", ["jpegPhoto"]}]

ldap search fields This option defines the search form and the LDAP attributes to search
within. The format is: [Name, Attribute, ...]. Name is the name of a search form field
which will be automatically translated by using the translation files (see msgs/*.msg for
available words). Attribute is the LDAP attribute or the pattern "%u". The default is:

[{"User", "%u"},
{"Full Name", "displayName"},
{"Given Name", "givenName"},
{"Middle Name", "initials"},
{"Family Name", "sn"},
{"Nickname", "%u"},
{"Birthday", "birthDay"},
{"Country", "c"},
{"City", "l"},
{"Email", "mail"},
{"Organization Name", "o"},
{"Organization Unit", "ou"}]

ldap search reported This option defines which search fields should be reported. The format
is: [Name, vCard Name, ...]. Name is the name of a search form field which will be
automatically translated by using the translation files (see msgs/*.msg for available words).
vCard Name is the vCard field name defined in the ldap vcard map option. The default is:

[{"Full Name", "FN"},
{"Given Name", "FIRST"},
{"Middle Name", "MIDDLE"},
{"Family Name", "LAST"},
{"Nickname", "NICK"},
{"Birthday", "BDAY"},
{"Country", "CTRY"},
{"City", "LOCALITY"},
{"Email", "EMAIL"},
{"Organization Name", "ORGNAME"},
{"Organization Unit", "ORGUNIT"}]

Examples:

3.3 Modules Configuration 71

• Let’s say ldap.example.org is the name of our LDAP server. We have users with their
passwords in "ou=Users,dc=example,dc=org" directory. Also we have addressbook, which
contains users emails and their additional infos in "ou=AddressBook,dc=example,dc=org"
directory. Corresponding authentication section should looks like this:

%% authentication method
{auth_method, ldap}.
%% DNS name of our LDAP server
{ldap_servers, ["ldap.example.org"]}.
%% We want to authorize users from ’shadowAccount’ object class only
{ldap_filter, "(objectClass=shadowAccount)"}.

Now we want to use users LDAP-info as their vCards. We have four attributes defined in
our LDAP schema: "mail" — email address, "givenName" — first name, "sn" — second
name, "birthDay" — birthday. Also we want users to search each other. Let’s see how we
can set it up:

{modules,
...
{mod_vcard_ldap,
[
%% We use the same server and port, but want to bind anonymously because
%% our LDAP server accepts anonymous requests to
%% "ou=AddressBook,dc=example,dc=org" subtree.
{ldap_rootdn, ""},
{ldap_password, ""},
%% define the addressbook’s base
{ldap_base, "ou=AddressBook,dc=example,dc=org"},
%% uidattr: user’s part of JID is located in the "mail" attribute
%% uidattr_format: common format for our emails
{ldap_uids, [{"mail","%u@mail.example.org"}]},
%% We have to define empty filter here, because entries in addressbook does not
%% belong to shadowAccount object class
{ldap_filter, ""},
%% Now we want to define vCard pattern
{ldap_vcard_map,
[{"NICK", "%u", []}, % just use user’s part of JID as his nickname
{"FIRST", "%s", ["givenName"]},
{"LAST", "%s", ["sn"]},
{"FN", "%s, %s", ["sn", "givenName"]}, % example: "Smith, John"
{"EMAIL", "%s", ["mail"]},
{"BDAY", "%s", ["birthDay"]}]},

%% Search form
{ldap_search_fields,
[{"User", "%u"},
{"Name", "givenName"},
{"Family Name", "sn"},
{"Email", "mail"},
{"Birthday", "birthDay"}]},

72 3. Configuring ejabberd

%% vCard fields to be reported
%% Note that JID is always returned with search results
{ldap_search_reported,
[{"Full Name", "FN"},
{"Nickname", "NICK"},
{"Birthday", "BDAY"}]}

]}
...

}.

Note that mod vcard ldap module checks an existence of the user before searching his info
in LDAP.

• ldap vcard map example:

{ldap_vcard_map,
[{"NICK", "%u", []},
{"FN", "%s", ["displayName"]},
{"CTRY", "Russia", []},
{"EMAIL", "%u@%d", []},
{"DESC", "%s\n%s", ["title", "description"]}

]},

• ldap search fields example:

{ldap_search_fields,
[{"User", "uid"},
{"Full Name", "displayName"},
{"Email", "mail"}

]},

• ldap search reported example:

{ldap_search_reported,
[{"Full Name", "FN"},
{"Email", "EMAIL"},
{"Birthday", "BDAY"},
{"Nickname", "NICK"}

]},

3.3.25 mod version

This module implements Software Version (XEP-009274). Consequently, it answers ejabberd’s
version when queried.

Options:

74http://www.xmpp.org/extensions/xep-0092.html

http://www.xmpp.org/extensions/xep-0092.html

3.3 Modules Configuration 73

show os Should the operating system be revealed or not. The default value is true.

iqdisc This specifies the processing discipline for Software Version (jabber:iq:version) IQ
queries (see section 3.3.2).

74 3. Configuring ejabberd

Chapter 4

Managing an ejabberd server

4.1 ejabberdctl

4.1.1 Commands

The ejabberdctl command line script allows to start, stop and perform many other adminis-
trative tasks in a local or remote ejabberd server.

When ejabberdctl is executed without any parameter, it displays the available options. If there
isn’t an ejabberd server running, the available parameters are:

start Start ejabberd in background mode. This is the default method.

debug Attach an Erlang shell to an already existing ejabberd server. This allows to execute
commands interactively in the ejabberd server.

live Start ejabberd in live mode: the shell keeps attached to the started server, showing log
messages and allowing to execute interactive commands.

If there is an ejabberd server running in the system, ejabberdctl shows all the available
commands in that server. The more interesting ones are:

status Check the status of the ejabberd server.

stop Stop the ejabberd server which is running in the machine.

reopen-log If you use a tool to rotate logs, you have to configure it so that this command is
executed after each rotation.

backup, restore, install-fallback, dump, load You can use these commands to create
and restore backups.

75

76 4. Managing an ejabberd server

import-file, import-dir These options can be used to migrate from other Jabber/XMPP
servers. There exist tutorials to migrate from other software to ejabberd1.

delete-expired-messages This option can be used to delete old messages in offline storage.
This might be useful when the number of offline messages is very high.

The ejabberdctl script also allows the argument --node NODENAME. This allows to administer
a remote node.

The ejabberdctl administration script can be configured in the file ejabberdctl.cfg. This file
provides detailed information about each configurable option.

4.1.2 Erlang runtime system

ejabberd is an Erlang/OTP application that runs inside an Erlang runtime system. This system
is configured using environment variables and command line parameters. The ejabberdctl
administration script uses many of those possibilities. You can configure some of them with the
file ejabberdctl.cfg, which includes detailed description about them. This section describes
for reference purposes all the environment variables and command line parameters.

The environment variables:

EJABBERD CONFIG PATH Path to the ejabberd configuration file.

EJABBERD MSGS PATH Path to the directory with translated strings.

EJABBERD LOG PATH Path to the ejabberd service log file.

EJABBERD SO PATH Path to the directory with binary system libraries.

HOME Path to the directory that is considered ejabberd’s home. This path is used to read the
file .erlang.cookie.

ERL CRASH DUMP Path to the file where crash reports will be dumped.

ERL INETRC Indicates which IP name resolution to use. It is required if using -sname.

ERL MAX PORTS Maximum number of simultaneously open Erlang ports.

ERL MAX ETS TABLES Maximum number of ETS and Mnesia tables.

The command line parameters:

-sname ejabberd The Erlang node will be identified using only the first part of the host name,
i. e. other Erlang nodes outside this domain cannot contact this node. This is the preferable
option in most cases.

-name ejabberd The Erlang node will be fully identified. This is only useful if you plan to setup
an ejabberd cluster with nodes in different networks.

1http://www.ejabberd.im/migrate-to-ejabberd

http://www.ejabberd.im/migrate-to-ejabberd

4.2 Web Admin 77

-kernel inetrc "/etc/ejabberd/inetrc" Indicates which IP name resolution to use. It is
required if using -sname.

-detached Starts the Erlang system detached from the system console. Useful for running
daemons and backgrounds processes.

-noinput Ensures that the Erlang system never tries to read any input. Useful for running
daemons and backgrounds processes.

-pa /var/lib/ejabberd/ebin Specify the directory where Erlang binary files (*.beam) are lo-
cated.

-s ejabberd Tell Erlang runtime system to start the ejabberd application.

-mnesia dir "/var/lib/ejabberd/db/nodename" Specify the Mnesia database directory.

-sasl sasl error logger {file, "/var/log/ejabberd/sasl.log"} Path to the Erlang/OTP
system log file.

+K [true|false] Kernel polling.

-smp [auto|enable|disable] SMP support.

+P 250000 Maximum number of Erlang processes.

-remsh ejabberd@localhost Open an Erlang shell in a remote Erlang node.

Note that some characters need to be escaped when used in shell scripts, for instance " and {}.
You can find other options in the Erlang manual page (erl -man erl).

4.2 Web Admin

The ejabberd Web Admin allows to administer most of ejabberd using a web browser.

This feature is enabled by default: a ejabberd http listener with the option web admin (see
section 3.1.3) is included in the listening ports. Then you can open http://server:port/admin/
in your favourite web browser. You will be asked to enter the username (the full Jabber ID)
and password of an ejabberd user with administrator rights. After authentication you will see
a page similar to figure 4.1.

Here you can edit access restrictions, manage users, create backups, manage the database, en-
able/disable ports listened for, view server statistics,. . .

Examples:

• You can serve the Web Admin on the same port as the HTTP Polling interface. In this
example you should point your web browser to http://example.org:5280/admin/ to ad-
minister all virtual hosts or to http://example.org:5280/admin/server/example.com/
to administer only the virtual host example.com. Before you get access to the Web Admin
you need to enter as username, the JID and password from a registered user that is allowed
to configure ejabberd. In this example you can enter as username ‘admin@example.net’

78 4. Managing an ejabberd server

Figure 4.1: Top page from the Web Admin

to administer all virtual hosts (first URL). If you log in with ‘admin@example.com’ on
http://example.org:5280/admin/server/example.com/ you can only administer the
virtual host example.com.

...
{acl, admins, {user, "admin", "example.net"}}.
{host_config, "example.com", [{acl, admins, {user, "admin", "example.com"}}]}.
{access, configure, [{allow, admins}]}.
...
{hosts, ["example.org"]}.
...
{listen,
[...
{5280, ejabberd_http, [http_poll, web_admin]},
...

]
}.

• For security reasons, you can serve the Web Admin on a secured connection, on a port differ-
ing from the HTTP Polling interface, and bind it to the internal LAN IP. The Web Admin
will be accessible by pointing your web browser to https://192.168.1.1:5280/admin/:

...
{hosts, ["example.org"]}.
...
{listen,
[...
{5270, ejabberd_http, [http_poll]},
{5280, ejabberd_http, [web_admin, {ip, {192, 168, 1, 1}},

tls, {certfile, "/usr/local/etc/server.pem"}]},
...

]
}.

4.3 Ad-hoc Commands 79

4.3 Ad-hoc Commands

If you enable mod configure and mod adhoc, you can perform several administrative tasks in
ejabberd with a Jabber client. The client must support Ad-Hoc Commands (XEP-00502), and
you must login in the Jabber server with an account with proper privileges.

4.4 Change Computer Hostname

ejabberd uses the distributed Mnesia database. Being distributed, Mnesia enforces consistency
of its file, so it stores the name of the Erlang node in it. The name of an Erlang node includes
the hostname of the computer. So, the name of the Erlang node changes if you change the name
of the machine in which ejabberd runs, or when you move ejabberd to a different machine.

So, if you want to change the computer hostname where ejabberd is installed, you must follow
these instructions:

1. In the old server, backup the Mnesia database using the Web Admin or ejabberdctl. For
example:

ejabberdctl backup /tmp/ejabberd-oldhost.backup

2. In the new server, restore the backup file using the Web Admin or ejabberdctl. For
example:

ejabberdctl restore /tmp/ejabberd-oldhost.backup

2http://www.xmpp.org/extensions/xep-0050.html

http://www.xmpp.org/extensions/xep-0050.html

80 4. Managing an ejabberd server

Chapter 5

Securing ejabberd

5.1 Firewall Settings

You need to take the following TCP ports in mind when configuring your firewall:

Port Description
5222 Standard port for Jabber/XMPP client connections, plain or STARTTLS.
5223 Standard port for Jabber client connections using the old SSL method.
5269 Standard port for Jabber/XMPP server connections.
4369 Port used by EPMD for communication between Erlang nodes.
port range Used for connections between Erlang nodes. This range is configurable.

5.2 epmd

epmd (Erlang Port Mapper Daemon)1 is a small name server included in Erlang/OTP and used
by Erlang programs when establishing distributed Erlang communications. ejabberd needs
epmd to use ejabberdctl and also when clustering ejabberd nodes. This small program is
automatically started by Erlang, and is never stopped. If ejabberd is stopped, and there aren’t
any other Erlang programs running in the system, you can safely stop epmd if you want.

ejabberd runs inside an Erlang node. To communicate with ejabberd, the script ejabberdctl
starts a new Erlang node and connects to the Erlang node that holds ejabberd. In order for
this communication to work, epmd must be running and listening for name requests in the port
4369. You should block the port 4369 in the firewall, so only the programs in your machine can
access it.

If you build a cluster of several ejabberd instances, each ejabberd instance is called an ejabberd
node. Those ejabberd nodes use a special Erlang communication method to build the cluster,

1http://www.erlang.org/doc/man/epmd.html

81

http://www.erlang.org/doc/man/epmd.html

82 5. Securing ejabberd

and EPMD is again needed listening in the port 4369. So, if you plan to build a cluster of
ejabberd nodes you must open the port 4369 for the machines involved in the cluster. Remember
to block the port so Internet doesn’t have access to it.

Once an Erlang node solved the node name of another Erlang node using EPMD and port 4369,
the nodes communicate directly. The ports used in this case are random. You can limit the
range of ports when starting Erlang with a command-line parameter, for example:

erl ... -kernel inet_dist_listen_min 4370 inet_dist_listen_max 4375

5.3 Erlang Cookie

The Erlang cookie is a string with numbers and letters. An Erlang node reads the cookie at
startup from the command-line parameter -setcookie or from a cookie file. Two Erlang nodes
communicate only if they have the same cookie. Setting a cookie on the Erlang node allows you
to structure your Erlang network and define which nodes are allowed to connect to which.

Thanks to Erlang cookies, you can prevent access to the Erlang node by mistake, for example
when there are several Erlang nodes running different programs in the same machine.

Setting a secret cookie is a simple method to difficult unauthorized access to your Erlang node.
However, the cookie system is not ultimately effective to prevent unauthorized access or intrusion
to an Erlang node. The communication between Erlang nodes are not encrypted, so the cookie
could be read sniffing the traffic on the network. The recommended way to secure the Erlang
node is to block the port 4369.

5.4 Erlang node name

An Erlang node may have a node name. The name can be short (if indicated with the command-
line parameter -sname) or long (if indicated with the parameter -name). Starting an Erlang node
with -sname limits the communication between Erlang nodes to the LAN.

Using the option -sname instead of -name is a simple method to difficult unauthorized access to
your Erlang node. However, it is not ultimately effective to prevent access to the Erlang node,
because it may be possible to fake the fact that you are on another network using a modified
version of Erlang epmd. The recommended way to secure the Erlang node is to block the port
4369.

Chapter 6

Clustering

6.1 How it Works

A Jabber domain is served by one or more ejabberd nodes. These nodes can be run on different
machines that are connected via a network. They all must have the ability to connect to port 4369
of all another nodes, and must have the same magic cookie (see Erlang/OTP documentation,
in other words the file ~ejabberd/.erlang.cookie must be the same on all nodes). This is
needed because all nodes exchange information about connected users, s2s connections, registered
services, etc. . .

Each ejabberd node has the following modules:

• router,

• local router,

• session manager,

• s2s manager.

6.1.1 Router

This module is the main router of Jabber packets on each node. It routes them based on their
destination’s domains. It uses a global routing table. The domain of the packet’s destination is
searched in the routing table, and if it is found, the packet is routed to the appropriate process.
If not, it is sent to the s2s manager.

6.1.2 Local Router

This module routes packets which have a destination domain equal to one of this server’s host
names. If the destination JID has a non-empty user part, it is routed to the session manager,
otherwise it is processed depending on its content.

83

84 6. Clustering

6.1.3 Session Manager

This module routes packets to local users. It looks up to which user resource a packet must be
sent via a presence table. Then the packet is either routed to the appropriate c2s process, or
stored in offline storage, or bounced back.

6.1.4 s2s Manager

This module routes packets to other Jabber servers. First, it checks if an opened s2s connection
from the domain of the packet’s source to the domain of the packet’s destination exists. If that
is the case, the s2s manager routes the packet to the process serving this connection, otherwise
a new connection is opened.

6.2 Clustering Setup

Suppose you already configured ejabberd on one machine named (first), and you need to setup
another one to make an ejabberd cluster. Then do following steps:

1. Copy ~ejabberd/.erlang.cookie file from first to second.

(alt) You can also add ‘-cookie content_of_.erlang.cookie’ option to all ‘erl’ com-
mands below.

2. On second run the following command as the ejabberd daemon user, in the working
directory of ejabberd:

erl -sname ejabberd \
-mnesia extra_db_nodes "[’ejabberd@first’]" \
-s mnesia

This will start Mnesia serving the same database as ejabberd@first. You can check this
by running the command ‘mnesia:info().’. You should see a lot of remote tables and a
line like the following:

running db nodes = [ejabberd@first, ejabberd@second]

3. Now run the following in the same ‘erl’ session:

mnesia:change_table_copy_type(schema, node(), disc_copies).

This will create local disc storage for the database.

(alt) Change storage type of the scheme table to ‘RAM and disc copy’ on the second node
via the Web Admin.

6.3 Service Load-Balancing 85

4. Now you can add replicas of various tables to this node with ‘mnesia:add_table_copy’
or ‘mnesia:change_table_copy_type’ as above (just replace ‘schema’ with another table
name and ‘disc_copies’ can be replaced with ‘ram_copies’ or ‘disc_only_copies’).

Which tables to replicate is very dependant on your needs, you can get some hints from
the command ‘mnesia:info().’, by looking at the size of tables and the default storage
type for each table on ’first’.

Replicating a table makes lookups in this table faster on this node. Writing, on the other
hand, will be slower. And of course if machine with one of the replicas is down, other
replicas will be used.

Also section 5.3 (Table Fragmentation) of Mnesia User’s Guide1 can be helpful.

(alt) Same as in previous item, but for other tables.

5. Run ‘init:stop().’ or just ‘q().’ to exit from the Erlang shell. This probably can take
some time if Mnesia has not yet transfered and processed all data it needed from first.

6. Now run ejabberd on second with almost the same config as on first (you probably do
not need to duplicate ‘acl’ and ‘access’ options — they will be taken from first, and
mod_muc and mod_irc should be enabled only on one machine in the cluster).

You can repeat these steps for other machines supposed to serve this domain.

6.3 Service Load-Balancing

6.3.1 Components Load-Balancing

6.3.2 Domain Load-Balancing Algorithm

ejabberd includes an algorithm to load balance the components that are plugged on an ejabberd
cluster. It means that you can plug one or several instances of the same component on each
ejabberd cluster and that the traffic will be automatically distributed.

The default distribution algorithm try to deliver to a local instance of a component. If several
local instances are available, one instance is chosen randomly. If no instance is available locally,
one instance is chosen randomly among the remote component instances.

If you need a different behaviour, you can change the load balancing behaviour with the option
domain balancing. The syntax of the option is the following:

{domain_balancing, "component.example.com", <balancing_criterium>}.

Several balancing criteria are available:

• destination: the full JID of the packet to attribute is used.
1http://www.erlang.se/doc/doc-5.4.9/lib/mnesia-4.2.2/doc/html/Mnesia chap5.html#5.3

http://www.erlang.se/doc/doc-5.4.9/lib/mnesia-4.2.2/doc/html/Mnesia_chap5.html#5.3

86 6. Clustering

• source: the full JID of the packet from attribute is used.

• bare destination: the bare JID (without resource) of the packet to attribute is used.

• bare source: the bare JID (without resource) of the packet from attribute is used.

If the value corresponding to the criteria is the same, the same component instance in the cluster
will be used.

6.3.3 Load-Balancing Buckets

When there is a risk of failure for a given component, domain balancing can cause service trouble.
If one component is failing the service will not work correctly unless the sessions are rebalanced.

In this case, it is best to limit the problem to the sessions handled by the failing component.
This is what the domain balancing component number option does, making the load balancing
algorithm not dynamic, but sticky on a fix number of component instances.

The syntax is the following:

{domain_balancing_component_number, "component.example.com", N}

Chapter 7

Debugging

7.1 Watchdog Alerts

ejabberd includes a watchdog mechanism. If a process in the ejabberd server consumes too
much memory, a message is sent to the Jabber accounts defined with the option watchdog admins
in the ejabberd configuration file. Example configuration:

{watchdog_admins, ["admin2@localhost", "admin2@example.org"]}.

7.2 Log Files

An ejabberd node writes two log files:

ejabberd.log is the ejabberd service log, with the messages reported by ejabberd code

sasl.log is the Erlang/OTP system log, with the messages reported by Erlang/OTP using
SASL (System Architecture Support Libraries)

The option loglevel modifies the verbosity of the file ejabberd.log. The possible levels are:

0 No ejabberd log at all (not recommended)

1 Critical

2 Error

3 Warning

4 Info

5 Debug

87

88 7. Debugging

For example, the default configuration is:

{loglevel, 4}.

7.3 Debug Console

The Debug Console is an Erlang shell attached to an already running ejabberd server. With
this Erlang shell, an experienced administrator can perform complex tasks.

This shell gives complete control over the ejabberd server, so it is important to use it with
extremely care. There are some simple and safe examples in the article Interconnecting Erlang
Nodes1

To exit the shell, close the window or press the keys: control+c control+c.

1http://www.ejabberd.im/interconnect-erl-nodes

http://www.ejabberd.im/interconnect-erl-nodes

Appendix A

Internationalization and
Localization

All built-in modules support the xml:lang attribute inside IQ queries. Figure A.1, for example,
shows the reply to the following query:

<iq id=’5’
to=’example.org’
type=’get’
xml:lang=’ru’>

<query xmlns=’http://jabber.org/protocol/disco#items’/>
</iq>

Figure A.1: Service Discovery when xml:lang=’ru’

89

90 A. Internationalization and Localization

The Web Admin also supports the Accept-Language HTTP header (compare figure A.2 with
figure 4.1)

Figure A.2: Top page from the Web Admin with HTTP header ‘Accept-Language: ru’

Appendix B

Release Notes

Release notes are available from ejabberd Home Page1

1http://www.process-one.net/en/ejabberd/release notes/

91

http://www.process-one.net/en/ejabberd/release_notes/

92 B. Release Notes

Appendix C

Acknowledgements

Thanks to all people who contributed to this guide:

• Alexey Shchepin (xmpp:aleksey@jabber.ru)

• Badlop (xmpp:badlop@jabberes.org)

• Evgeniy Khramtsov (xmpp:xram@jabber.ru)

• Florian Zumbiehl (xmpp:florz@florz.de)

• Michael Grigutsch (xmpp:migri@jabber.i-pobox.net)

• Mickael Remond (xmpp:mremond@erlang-projects.org)

• Sander Devrieze (xmpp:sander@devrieze.dyndns.org)

• Sergei Golovan (xmpp:sgolovan@nes.ru)

• Vsevolod Pelipas (xmpp:vsevoload@jabber.ru)

93

xmpp:aleksey@jabber.ru
xmpp:badlop@jabberes.org
xmpp:xram@jabber.ru
xmpp:florz@florz.de
xmpp:migri@jabber.i-pobox.net
xmpp:mremond@erlang-projects.org
xmpp:sander@devrieze.dyndns.org
xmpp:sgolovan@nes.ru
xmpp:vsevoload@jabber.ru

94 C. Acknowledgements

Appendix D

Copyright Information

Ejabberd Installation and Operation Guide.
Copyright c© 2003 — 2008 Process-one

This document is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this document;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

95

Index

access, 31
Access Control List, 30, 31
access rules, 30
ACL, 30, 31
announcements, 47
anonymous login, 28
authentication, 27

Bandersnatch, 65
Blocking Communication, 60

clustering, 83
how it works, 83
local router, 83
ports, 81
router, 83
s2s manager, 84
session manager, 84
setup, 84

component load-balancing, 85
conferencing, 54
configuration file, 19

database, 33
databases

Active Directory, 42
LDAP, 40
ODBC, 39

debugging, 50, 87
watchdog, 87

ejabberdctl, 16, 59

features
additional features, 9
key features, 8

firewall, 81

host names, 19

i18n, 89
install, 12

bsd, 15
compile, 13
download, 13
install, 14
start, 14
windows, 15

installation
requirements, 12

internal authentication, 27
internationalization, 89
IPv6, 23
IRC, 52

Jabber User Directory, 68, 69
jabberd 1.4, 26
JUD, 68, 69
JWChat, 22, 23

l10n, 89
language, 33
LDAP, 20
localization, 89

maxrate, 32
message auditing, 65
message of the day, 47
Microsoft SQL Server, 36

authentication, 36
Driver Compilation, 36
schema, 36
storage, 37

migration from other software, 76
Mnesia, 27
modhttpbind, 50
modhttpfileserver, 51
modules, 44

mod announce, 47
mod disco, 49
mod echo, 47, 50
mod http bind, 50
mod http fileserver, 51

96

INDEX 97

mod irc, 52
mod last, 53
mod muc log, 57
mod muc, 54
mod offline, 47, 59
mod privacy, 60
mod private, 60
mod pubsub, 62
mod register, 63
mod roster, 64
mod service log, 65
mod shared roster, 65
mod stats, 66
mod time, 67
mod vcard ldap, 69
mod vcard, 68
mod version, 61, 72
ejabberd c2s, 22
ejabberd http, 22
ejabberd s2s in, 22
ejabberd service, 22
overview, 44

MOTD, 47
MySQL, 34

authentication, 35
Driver Compilation, 34
schema, 34
storage, 35

ODBC, 20
authentication, 39
storage, 40

options
access, 22, 48, 53, 54, 61, 63
access admin, 54
access create, 54
access createnode, 62
access log, 58
access persistent, 54
accesslog, 51
acl, 30, 31
allow return all, 68
auth method, 27
auth type, 61
cssfile, 58
default room opts, 55
defaultencoding, 53
dirtype, 58
docroot, 51

domain balancing, 85
domain balancing component number, 86
domain certfile, 24
extra domains, 49
history size, 55
host, 47, 50, 52, 54, 61, 62, 68, 69
host config, 20
hosts, 19, 22
http bind, 22
http poll, 23
inet6, 23
ip, 23, 61
iqdisc, 46, 49, 53, 60, 61, 63, 64, 67–69, 73
language, 33
ldap base, 40
ldap filter, 41
ldap password, 40
ldap port, 40
ldap rootdn, 40
ldap search fields, 70
ldap search reported, 70
ldap server, 40
ldap uidattr, 41
ldap uidattr format, 41
ldap uids, 41
ldap vcard map, 69
listen, 21
loggers, 65
matches, 68
max connections, 61
max stanza size, 23
max user conferences, 55
max user sessions, 32
max users, 55
max users admin threshold, 55
maxrate, 32
min message interval, 55
min presence interval, 55
name, 61
outdir, 58
pam service, 29
port, 61
rwatchers, 63
s2s certificate, 24
s2s use starttls, 24
search, 68, 69
search all hosts, 68
service check from, 22
shaper, 23, 32, 61

98 Index

showos, 73
spam prevention, 58
starttls, 23
starttls required, 23
timezone, 58
tls, 23
top link, 58
user max messages, 60
watchdog admins, 87
web admin, 23
welcomem, 63
zlib, 23

PAM authentication, 29
Pluggable Authentication Modules, 29
ports, 81
PostgreSQL, 37

authentication, 38
Driver Compilation, 37
schema, 37
storage, 38

Privacy Rules, 60
protocols

groupchat 1.0, 52
RFC 2254: The String Representation of

LDAP Search Filters, 41
RFC 2426: vCard MIME Directory Pro-

file, 69
RFC 3921: XMPP IM, 60, 64
RFC 4622: Internationalized Resource Iden-

tifiers (IRIs) and Uniform Resource Iden-
tifiers (URIs) for the Extensible Mes-
saging and Presence Protocol (XMPP),
57

XEP-0011: Jabber Browsing, 49
XEP-0012: Last Activity, 53
XEP-0025: HTTP Polling, 23, 77
XEP-0030: Service Discovery, 49
XEP-0039: Statistics Gathering, 66
XEP-0045: Multi-User Chat, 52, 54
XEP-0048: Bookmark Storage, 60
XEP-0049: Private XML Storage, 60
XEP-0054: vcard-temp, 68, 69
XEP-0060: Publish-Subscribe, 62
XEP-0065: SOCKS5 Bytestreams, 61
XEP-0077: In-Band Registration, 63
XEP-0090: Entity Time, 67
XEP-0092: Software Version, 72
XEP-0094: Agent Information, 49

XEP-0114: Jabber Component Protocol,
22

XEP-0138: Stream Compression, 23
XEP-0206: HTTP Binding, 22

public registration, 63

release notes, 91
roster management, 64

SASL, 81
sasl anonymous, 28
shapers, 32
shared roster groups, 65
STARTTLS, 23, 24
statistics, 66
Subversion repository, 13

Tkabber, 67
TLS, 23, 81
traffic speed, 32
transports

AIM, 25
email notifier, 25
Gadu-Gadu, 25
ICQ, 25
MSN, 25
Yahoo, 25

vCard, 68, 69
virtual domains, 20
virtual hosting, 20
virtual hosts, 20

web admin, 23, 77
web-based Jabber client, 22, 23
WPJabber, 26

XDB, 26
xml:lang, 89
XMPP compliancy, 44

Zlib, 23

	Introduction
	Key Features
	Additional Features

	Installing ejabberd
	Installing ejabberd with Binary Installer
	Installing ejabberd with Operating System specific packages
	Installing ejabberd with CEAN
	Installing ejabberd from Source Code
	Requirements
	Download Source Code
	Compile
	Install
	Start
	Specific Notes for BSD
	Specific Notes for Microsoft Windows

	Create a Jabber Account for Administration
	Upgrading ejabberd

	Configuring ejabberd
	Basic Configuration
	Host Names
	Virtual Hosting
	Listening Ports
	Authentication
	Access Rules
	Shapers
	Default Language

	Database and LDAP Configuration
	MySQL
	Microsoft SQL Server
	PostgreSQL
	ODBC Compatible
	LDAP

	Modules Configuration
	Overview
	Common Options
	mod_announce
	mod_disco
	mod_echo
	mod_http_bind
	mod_http_fileserver
	mod_irc
	mod_last
	mod_muc
	mod_muc_log
	mod_offline
	mod_privacy
	mod_private
	mod_proxy65
	mod_pubsub
	mod_register
	mod_roster
	mod_service_log
	mod_shared_roster
	mod_stats
	mod_time
	mod_vcard
	mod_vcard_ldap
	mod_version

	Managing an ejabberd server
	ejabberdctl
	Commands
	Erlang runtime system

	Web Admin
	Ad-hoc Commands
	Change Computer Hostname

	Securing ejabberd
	Firewall Settings
	epmd
	Erlang Cookie
	Erlang node name

	Clustering
	How it Works
	Router
	Local Router
	Session Manager
	s2s Manager

	Clustering Setup
	Service Load-Balancing
	Components Load-Balancing
	Domain Load-Balancing Algorithm
	Load-Balancing Buckets

	Debugging
	Watchdog Alerts
	Log Files
	Debug Console

	Internationalization and Localization
	Release Notes
	Acknowledgements
	Copyright Information

