

CDMA/UMTS University Technical Training Sessions For CTIA Wireless 2005

80-W0327-1 Rev A



Export of this technology may be controlled by the United States Government. Diversion contrary to U.S. law prohibited.

QUALCOMM is a registered trademark and registered service mark of QUALCOMM Incorporated. gpsOne and repeaterOne are trademarks of QUALCOMM Incorporated.

cdma2000<sup>®</sup> is a registered certification mark of the Telecommunications Industry Association. Used under license. All other trademarks and registered trademarks are the property of their respective owners.

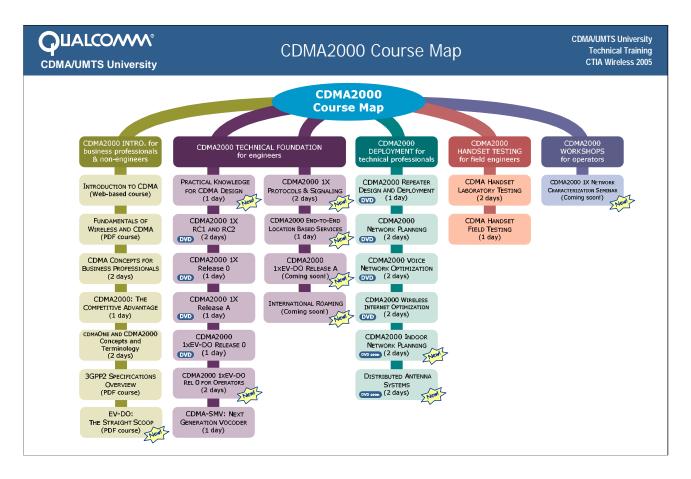
# **Material Use Restrictions**

These written materials are to be used only in conjunction with the associated instructor-led class. They are not intended to be used solely as reference material.

No part of these written materials may be used or reproduced in any manner whatsoever without the written permission of QUALCOMM Incorporated.

Copyright © 2005 QUALCOMM Incorporated. All rights reserved.

QUALCOMM Incorporated 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

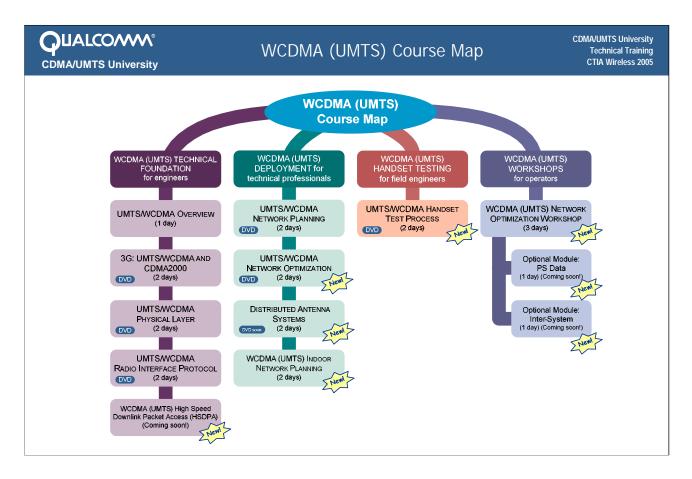



# **CDMA/UMTS University**

CDMA/UMTS University is the Technical Training division of QUALCOMM Incorporated, the wireless technology leader.

Whether your area of interest is CDMA2000 or WCDMA (UMTS), we have courses to increase your understanding of the technology, its optimum design, and how it operates in real-world networks.

All courses are taught by domain experts from QUALCOMM, including the engineers who helped develop the CDMA technology.




CDMA University courses cover a wide range of CDMA2000 subjects and users:

- **Introductory** courses for business professionals and non-engineers (many introductory courses are available as free PDFs that you can download from the Web)
- Foundation courses for engineers
- Network Deployment courses for technical professionals
- Handset Testing courses for field engineers
- Workshops for operators



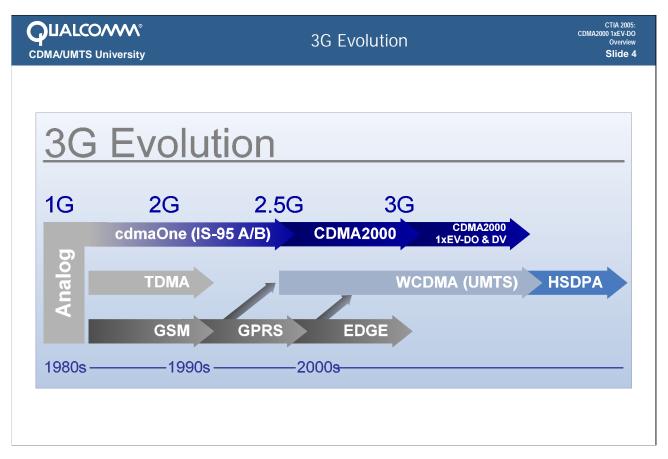
To learn more about CDMA University, see CDMA course listings, or sign up for classes, go to **www.cdmauniversity.com/cdma/**.



UMTS University courses cover a wide range of WCDMA (UMTS) subjects and users:

- Technical Foundation courses for engineers
- Network Deployment courses for technical professionals
- Handset Testing courses for field engineers
- Workshops for operators



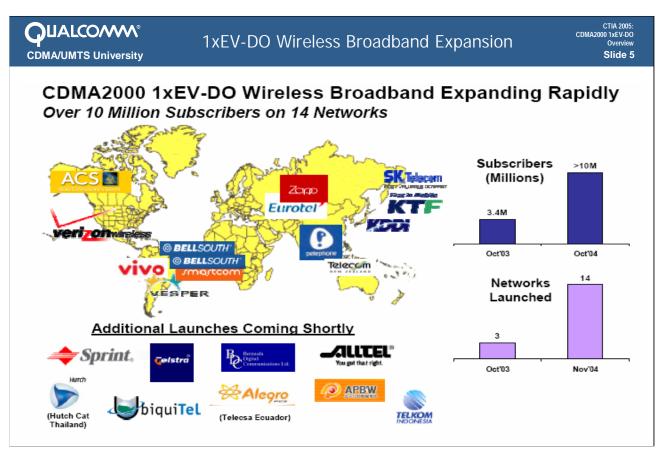

To learn more about UMTS University, see UMTS course listings, or sign up for classes, go to **www.cdmauniversity.com/umts/**.

| CDMA/UMTS University                                                                                                                                   | CDMA.HELP / UMTS.HELP                     |                                                                    | CDMA/UMTS University<br>Technical Training<br>CTIA Wireless 2005 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|--|--|
|                                                                                                                                                        |                                           |                                                                    |                                                                  |  |  |
|                                                                                                                                                        | CDMA.HELP@QUALCOMM.COM                    |                                                                    |                                                                  |  |  |
|                                                                                                                                                        | UMTS.HELP@QU                              | JALCOMM.COM                                                        |                                                                  |  |  |
| -<br>Fmai                                                                                                                                              | hotling to appint our CDMA                |                                                                    | huide                                                            |  |  |
| • Emai                                                                                                                                                 | I notline to assist our CDIMA             | and UMTS customers world                                           | dwide.                                                           |  |  |
| <ul> <li>Experienced CDMA or UMTS engineers in our Engineering Services<br/>Group will answer your technical questions on topics including:</li> </ul> |                                           |                                                                    |                                                                  |  |  |
| -                                                                                                                                                      | <ul> <li>Industry Standards</li> </ul>    | <ul> <li>Network Planning</li> </ul>                               |                                                                  |  |  |
| -                                                                                                                                                      | <ul> <li>Infrastructure Design</li> </ul> | <ul> <li>Network Optimization</li> <li>Test Engineering</li> </ul> |                                                                  |  |  |
| -                                                                                                                                                      | <ul> <li>Voice Quality</li> </ul>         |                                                                    |                                                                  |  |  |
| -                                                                                                                                                      | <ul> <li>System Design</li> </ul>         | <ul> <li>Training</li> </ul>                                       |                                                                  |  |  |
|                                                                                                                                                        |                                           |                                                                    |                                                                  |  |  |



| CDMA/UMTS University                           | CDMA2000 1xEV-DO Overview                                                                                                                                                                                                                                                                           | CTIA 2009<br>CDMA2000 1xEV-D<br>Overvier<br>Slide |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                |                                                                                                                                                                                                                                                                                                     |                                                   |
| CDMA200                                        | 0 1xEV-DO Overview                                                                                                                                                                                                                                                                                  |                                                   |
|                                                | MM kicks off this technical training series with a overview of the EV-DO wireless broadband gy.                                                                                                                                                                                                     |                                                   |
| low-cost<br>speed wir<br>of 300-60<br>2.4 mbps | (IS-856) is optimized for high-performance and<br>packet data services. It is a revolutionary high<br>reless data technology providing user data speeds<br>00 kbps over cellular, accommodating bursts up to<br>5 – including the latest revision to support even<br>ata rates and lower latencies. |                                                   |
|                                                |                                                                                                                                                                                                                                                                                                     |                                                   |






# **3G Evolution**

An older, but more detailed version of this chart can be found at:

# www.itu.int/osg/imt-project/docs/What\_is\_IMT2000-2.pdf

Note that the term "3G" is not formally defined.



# **1xEV-DO Wireless Broadband Expansion**

For the most up-to-date version of this data, see:

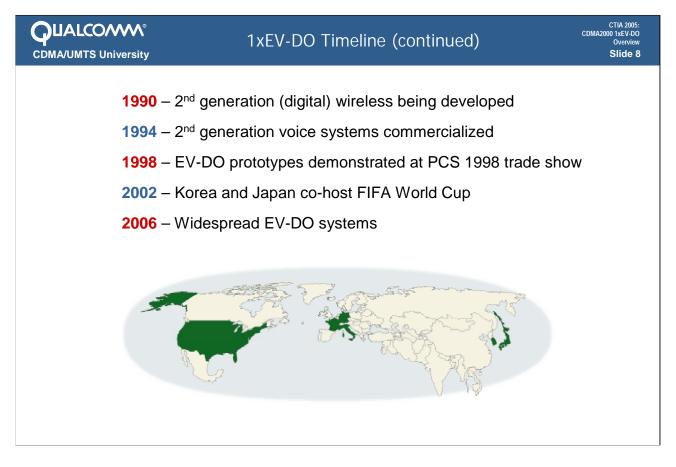
www.3gtoday.com/operators/index.html



#### **1xEV-DO Roadmap**

For the most current updates to this data, see:

www.qualcomm.com/ir/presentations.html

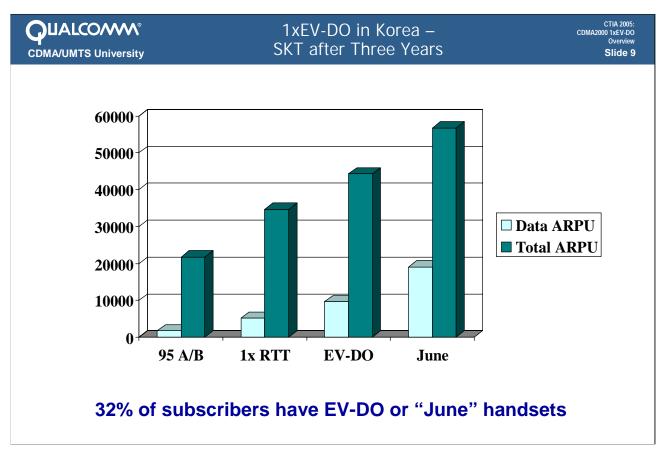

| QUALCOMM <sup>®</sup><br>CDMA/UMTS University | 1xEV-DO Timeline     | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 7 |
|-----------------------------------------------|----------------------|-------------------------------------------------------|
|                                               | 1990 - Italy         |                                                       |
|                                               | 1994 - USA           |                                                       |
|                                               | 1998 - France        |                                                       |
|                                               | 2002 - Korea & Japan |                                                       |
|                                               | 2006 - Germany       |                                                       |
|                                               |                      |                                                       |
|                                               |                      |                                                       |

# **1xEV-DO** Timeline

These dates are actually those of the FIFA World Cup competitions.

How does this relate to EV-DO?

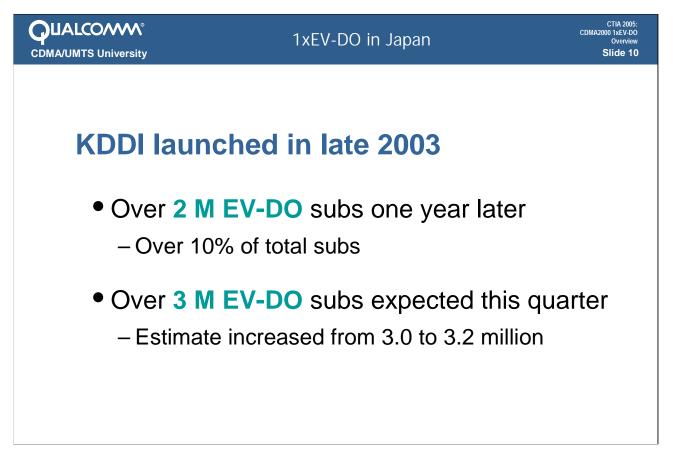
EV-DO was commercial in 2002 in South Korea when they co-hosted the event with Japan.




# **1xEV-DO Timeline (continued)**

- The EV-DO development can be traced back to 1996.
- Working prototypes were publicly shown in 1998.
- By 1999, large demonstrations of an over-the-air network loaded with working terminals were presented.
- In 2000, the IS-856 Air Interface specification was adopted and published.
- By 2001, commercial ASICs were available.
- Currently, there are over 10 million EV-DO subscribers around the world.

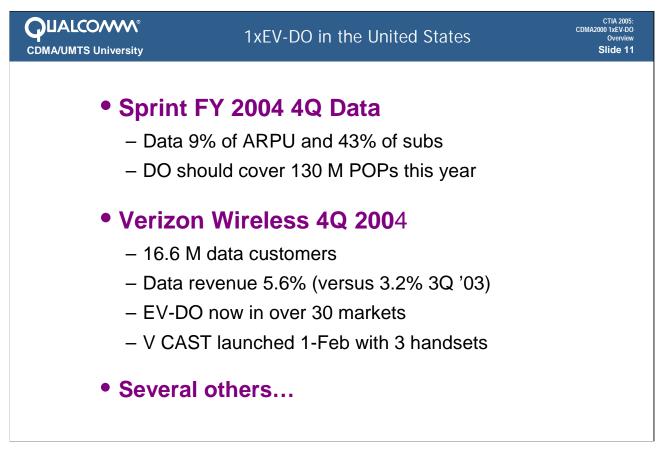
#### CDMA/UMTS University


#### CDMA2000 1xEV-DO Overview



# **EV-DO in Korea**

The source of this graph is:


www.sktelecom.com/english/down/UBS\_SKT.pdf



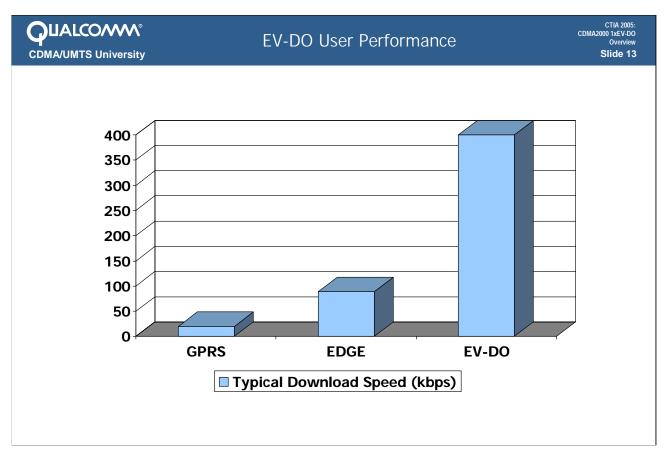
# **EV-DO in Japan**

The source of this information is:

www.kddi.com/english/corporate/ir/presentation/pdf/kddi\_050127\_e\_main.pdf



# **1xEV-DO** in the United States


This information is from Sprint and Verizon investor reports.

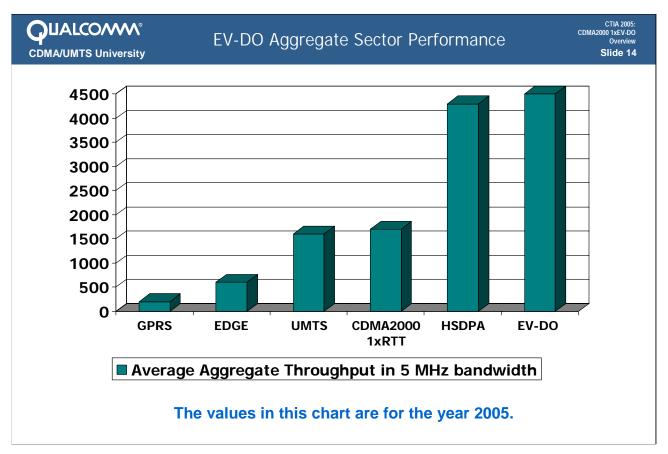
|  | V | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  |   | and the second |  |
|  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

#### Handsets

For the most recent updates, see:

www.3gtoday.com/devices/DevicesByTechnology.html#CDMA2000%201xEV-DO




# **1xEV-DO User Performance**

This graph depicts the download time for a 1 megabyte file.

The data shown here is from Exhibit 1 of Cingular's March 18<sup>th</sup>, 2004 Form 603 Filing to the FCC.

#### CDMA/UMTS University

#### CDMA2000 1xEV-DO Overview



# **EV-DO Aggregate Sector Performance**

The source of this information is Figure 2 in the following document:

www.cdg.org/resources/white\_papers/files/Universal\_Services\_10-28-04.pdf

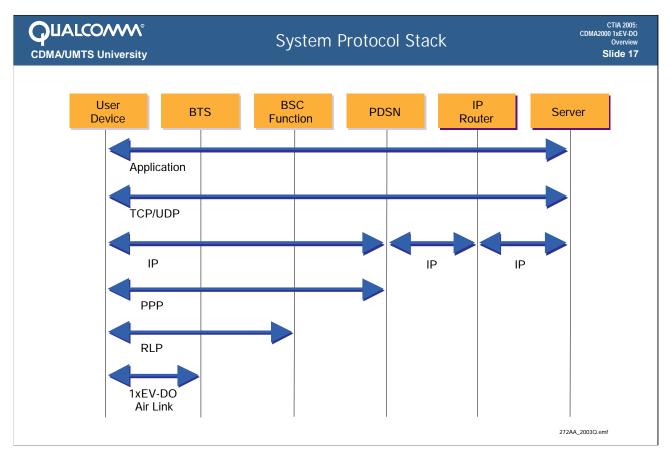
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ncements in HRPD Rev A CDMA2005: CDMA2005: CDMA2005 IXEV-DO<br>VEV-DO Rev A) Slide 15                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Enhanced Reverse link<br/>support</li> <li>Maximum sped of 1.8 Mbps</li> <li>Shorter frames</li> <li>Higher capacity</li> <li>Forward link enhancements</li> <li>Higher peak data rate of 3.1<br/>Mbps</li> <li>Smaller packet sizes (128, 256,<br/>and 512 bits)</li> <li>Multi-user packets</li> <li>Improved slotted mode</li> <li>Shorter slot cycle for reduced<br/>activation time</li> <li>Subsynchronous control channel<br/>for enhanced standby time</li> </ul> | <ul> <li>Enhanced multi-flow packet data application</li> <li>Reverse link MAC enhancements for QoS</li> <li>Data Source Control (DSC) for seamless cell selection</li> <li>Enhanced Generic Attribute Update protocol</li> </ul> |

# Major Enhancements in HRPD Rev A

The source of this data is:

ftp://ftp.3gpp2.org/TSGC/Working/2005/2005-01/TSG-C-2005-01-Vancouver/WG3/C30-20040607-022R1%203GPP2\_TSG-C%20Overview-IA450-040615\_5.ppt

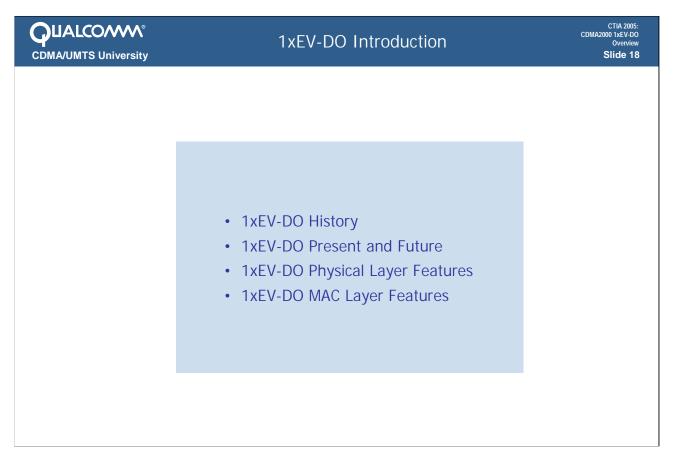
#### CDMA/UMTS University

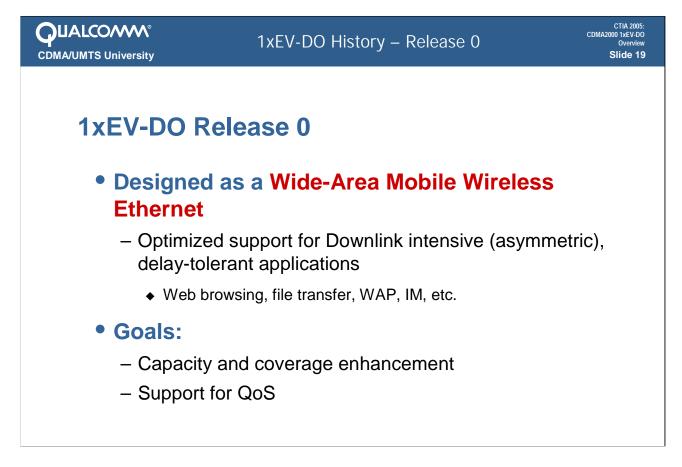

#### CDMA2000 1xEV-DO Overview

| QUALCOMM°<br>CDMA/UMTS University | Enł                                                                                                                                      | nancements                          | s added to EN                                                                  | /-DO in Rev. A                            | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 16 |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|
|                                   | Control<br>Plane                                                                                                                         | (Ray)<br>(Napper)                   | IP/Port2 Re                                                                    | ites (TFTs)<br>svID 1<br>svID 2<br>svID 3 |                                                        |
|                                   | Flow<br>Control<br>Protocol<br>Location<br>Update<br>Protocol                                                                            | Data Over<br>Signaling ResvID 1 Res | UP<br>W2<br>VID2<br>VID3                                                       | Application Layer                         |                                                        |
|                                   |                                                                                                                                          | Stream Or S                         | Virtual<br>itream<br>rotocol                                                   | Stream Layer                              |                                                        |
|                                   | SMP,<br>AMP, SCP                                                                                                                         |                                     |                                                                                | Session Layer                             |                                                        |
|                                   | Idle State Protocol or<br>Enhanced Idle State<br>Protocol, ALMP, ISP,<br>PCP, Route Update<br>Protocol, OMP, CSP                         |                                     |                                                                                | Connection Layer                          |                                                        |
|                                   | Security Protocol for<br>Exchange Trobool or<br>Protocol, Default<br>Encryption Protocol or AES Encryption Protocol<br>Protocol, Default |                                     | Security Layer                                                                 |                                           |                                                        |
|                                   |                                                                                                                                          | MAC MAC Protocol Or Or              | Reverse<br>C MAC<br>Orotocol<br>Or                                             | MAC<br>Layer                              |                                                        |
|                                   |                                                                                                                                          | CC MAC AC MAC                       | hanced<br>prward<br>C MAC<br>rotocol<br>C MAC<br>Protocol<br>C MAC<br>Protocol | Subtype3 Reverse TC<br>MAC Protocol       |                                                        |
|                                   |                                                                                                                                          | Subtype 0<br>(Legacy)<br>PHY        | or Subtype 1<br>PHY Or (Release A)<br>PHY                                      | Physical<br>Layer                         |                                                        |

# Enhancements added to EV-DO in Rev A

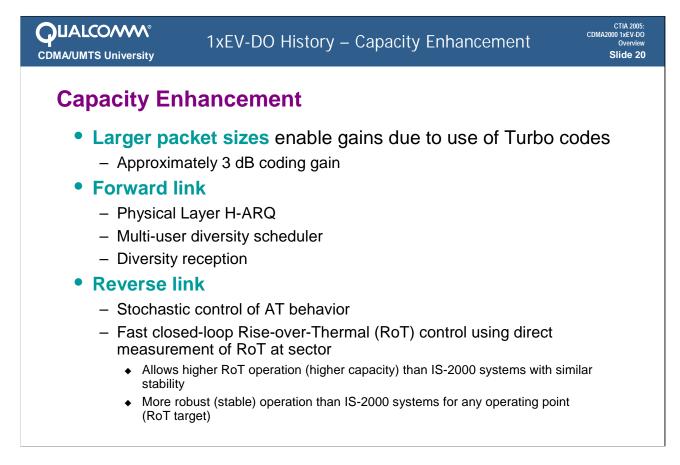
The source of this graph is:

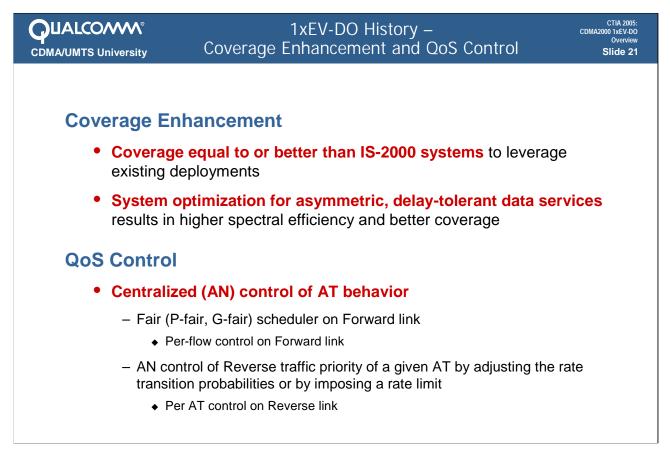

ftp://ftp.3gpp2.org/TSGC/Working/2005/2005-01/TSG-C-2005-01-Vancouver/WG3/C30-20040607-022R1%203GPP2\_TSG-C%20Overview-IA450-040615\_5.ppt

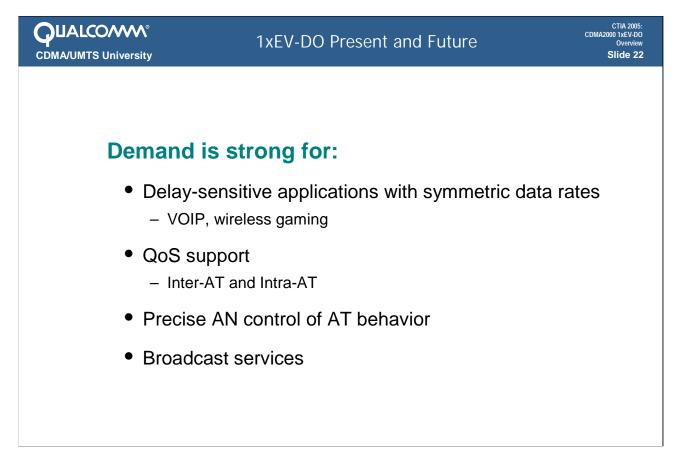


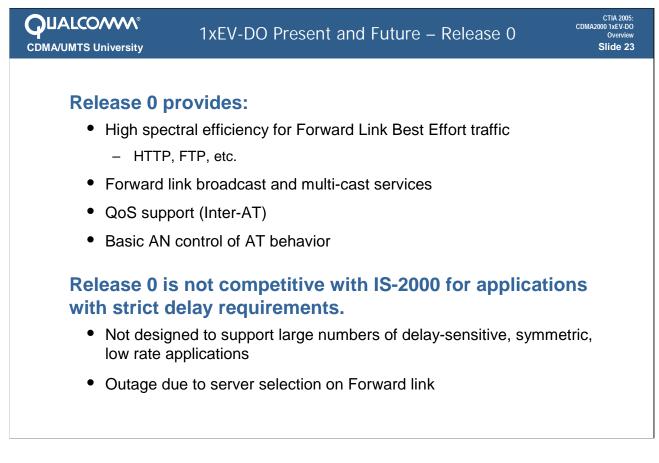

# System Protocol Stack

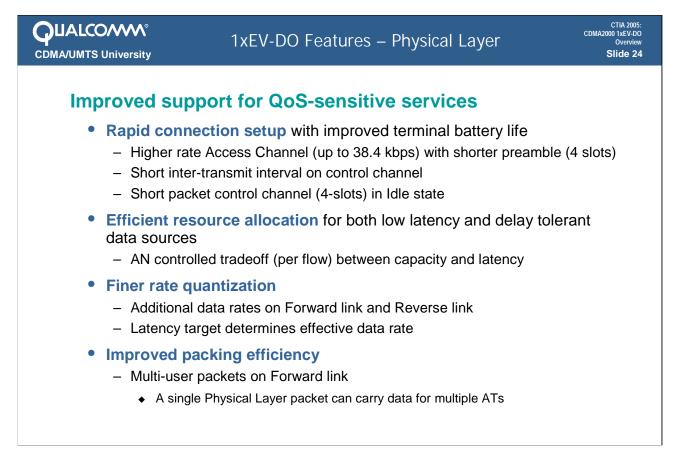
This figure shows the typical protocol stack for a 1xEV-DO system. Only the 1xEV-DO air link and RLP are specific to 1xEV-DO. The other protocols (PPP, IP, TCP, and User Datagram Protocol [UDP]) are based on Internet Engineering Task Force (IETF) standards.

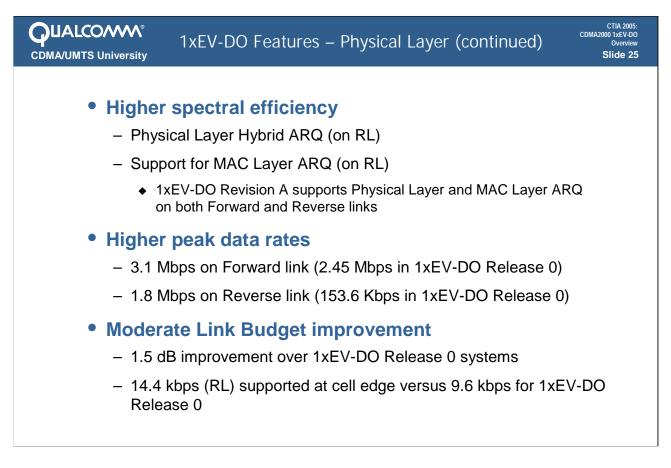

Do not confuse the seven layers inside EV-DO with the classic, seven layer OSI networking model. The EV-DO layers are down at the Physical and Data Link layers.

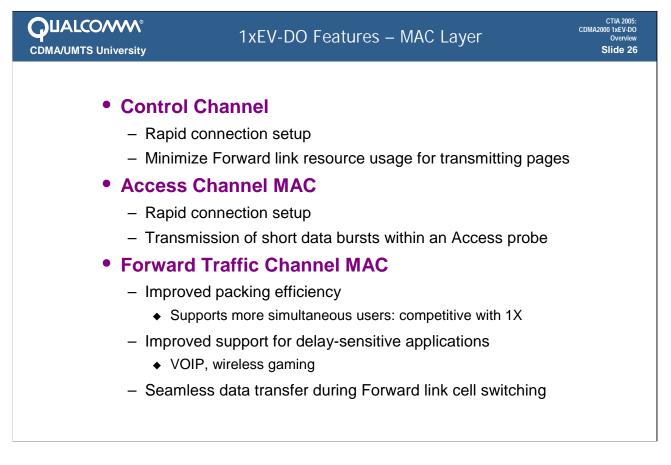




# 1xEV-DO History – Release 0

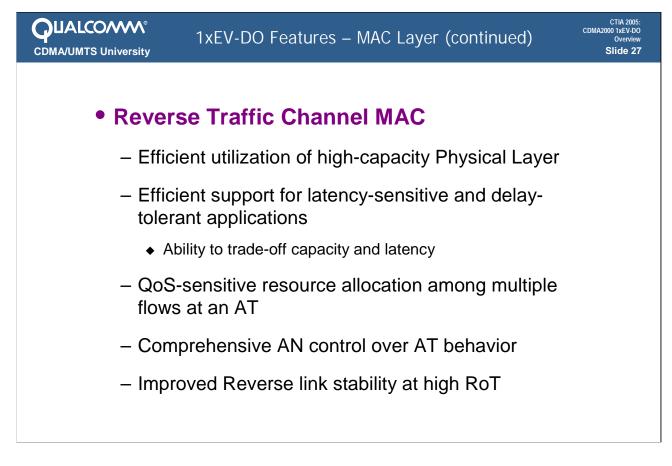

Remember, this was designed way back in the late 20<sup>th</sup> Century!





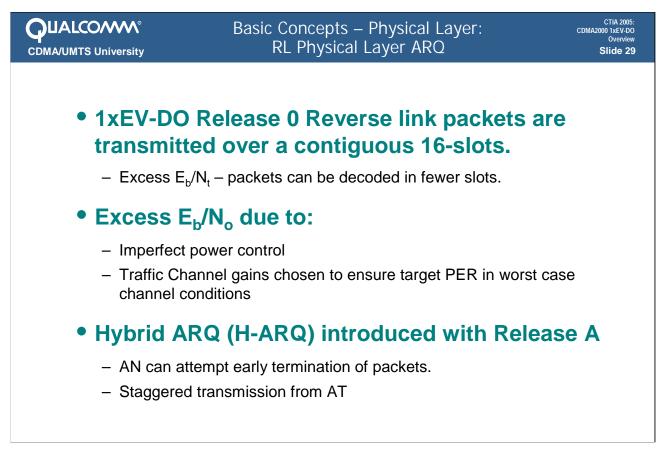







# 1xEV-DO Features – MAC Layer


EV-DO has always supported sub-second connection setup. With EV-DO Revision A, many additional enhancements have been added.



# 1xEV-DO Features – MAC Layer (continued)

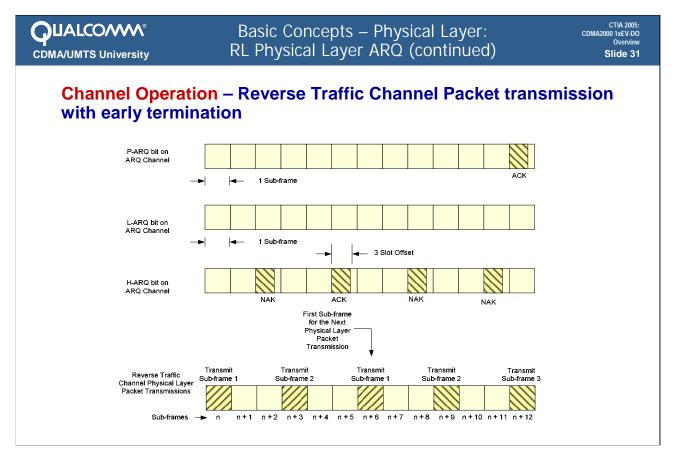
*RoT* is the *Rise over Thermal* – the fundamental limit on Reverse link capacity.





# **Reverse Link Physical Layer ARQ**

The EV-DO slot time is 1.67 milliseconds.

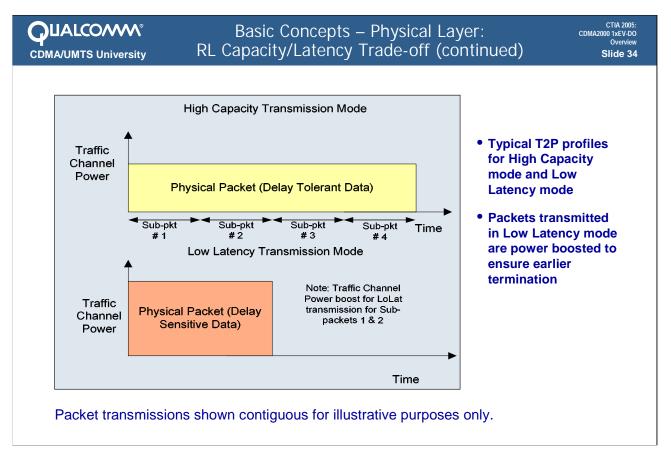

The initial release of EV-DO used Reverse link frames that were always 26.67 milliseconds in length.

| CDMA/UMTS University                                                                                                                                                                                                                                                                               | Basic Concepts – Physical Layer:<br>RL Physical Layer ARQ (continued)                                                                                              | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 30 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| <ul> <li>increments <ul> <li>Transmission te</li> <li>AN soft-combine</li> <li>Until packet sud packet are transmission</li> </ul> </li> <li>ARQ bits transmission</li> <li>Design simplicities <ul> <li>Latency requires</li> <li>The FL MAC chainadequate to transmission</li> </ul> </li> </ul> | ccessfully decodes OR maximum number of sub-packe<br>smitted.<br><b>hitted on the FL MAC channel</b><br>ty                                                         | er is<br>ty (RA)                                       |
| <ul> <li>Excess E<sub>b</sub>/N<sub>o</sub> d</li> <li>H-ARQ to termi</li> </ul>                                                                                                                                                                                                                   | er control along with H-ARQ<br>ue to decimated power control is used advantageously<br>inate packets early.<br>erence variance may lead to improved overhead chann | -                                                      |

# Reverse Link Physical Layer ARQ (continued)

In EV-DO Revision A, a Reverse link subpacket can be completed in under 8 milliseconds.

The added bits to support H-ARQ on the Reverse link need to be transmitted on the Forward link. These are shared with the Reverse Power Control (RPC) bits.




| CDMA/UMTS University                                                              | Basic Concepts – Physical Layer:<br>RL Physical Layer ARQ (continued) | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 32 |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|
| <ul> <li>Slower pow<br/>higher Pilot</li> <li>However, a<br/>and H-ARC</li> </ul> | ver control sometimes results in                                      | a<br>ontrol                                            |
|                                                                                   |                                                                       |                                                        |

# CDMA/UMTS University

## CDMA2000 1xEV-DO Overview

| CDMA/UMTS University                                                                          | Basic Concepts – Physical Layer:<br>RL Capacity/Latency Trade-offCTIA 2005:<br>CDMA2000 1xEV-DO<br>OVERVIEW<br>Slide 33 |                                    |                         | V-DO<br>rview                  |                         |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|--------------------------------|-------------------------|--|
| Controlling the number<br>of subpackets of<br>transmission required<br>to ensure a target PER | Payload<br>Size<br>(bits)                                                                                               | After<br>4 slots                   | After 8<br>slots        | Rate (kbp<br>After 12<br>slots | After 16<br>slots       |  |
| provides control on the<br>Physical Layer latency<br>and capacity.                            | 128<br>256<br>512                                                                                                       | 19.2           38.4           76.8 | 9.6<br>19.2<br>38.4     | 6.4<br>12.8<br>25.6            | 4.8<br>9.6<br>19.2      |  |
| <ul> <li>Longer latency target:<br/>Higher capacity and<br/>larger delay</li> </ul>           | 768<br>1024<br>1536                                                                                                     | 115.2<br>153.6<br>230.4            | 57.6<br>76.8<br>115.2   | 38.4<br>51.2<br>76.8           | 28.8<br>38.4<br>57.6    |  |
| <ul> <li>Shorter latency target:<br/>Lower capacity and<br/>lower delay</li> </ul>            | 2048<br>3072<br>4096                                                                                                    | 307.2<br>460.8<br>614.4            | 153.6<br>230.4<br>307.2 | 102.4<br>153.6<br>204.8        | 76.8<br>115.2<br>153.6  |  |
|                                                                                               | 6144<br>8192<br>12288                                                                                                   | 921.6<br>1228.8<br>1843.2          | 460.4<br>614.4<br>921.6 | 307.2<br>409.6<br>614.4        | 230.4<br>307.2<br>460.8 |  |

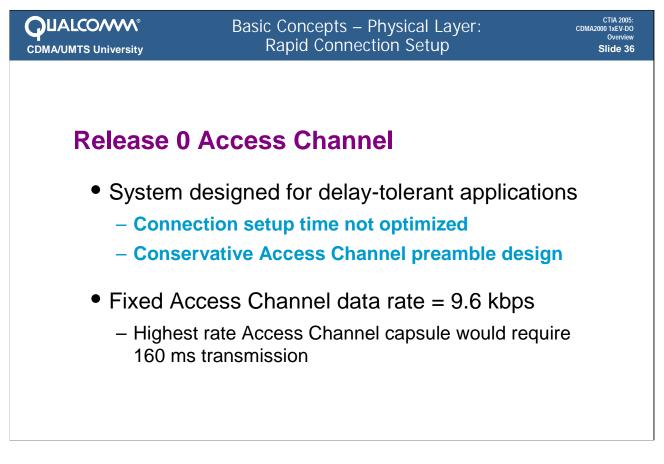


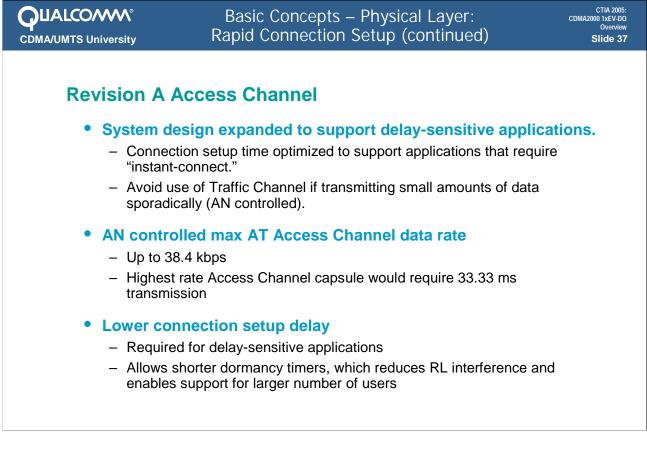
# **RL Capacity/Latency Trade-off**

*T2P* refers to controlling the relative power of the Data Channel (traffic) compared to the Pilot Channel.

The subpackets are actually spaced out long enough for the H-ARQ operation to function as shown on the earlier slide.

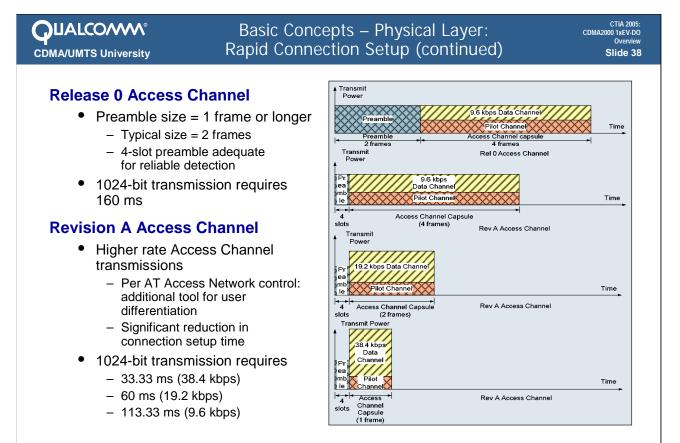
#### CDMA/UMTS University


#### CDMA2000 1xEV-DO Overview




# **Reduced RL Transmission Start Delay**

This assumes:

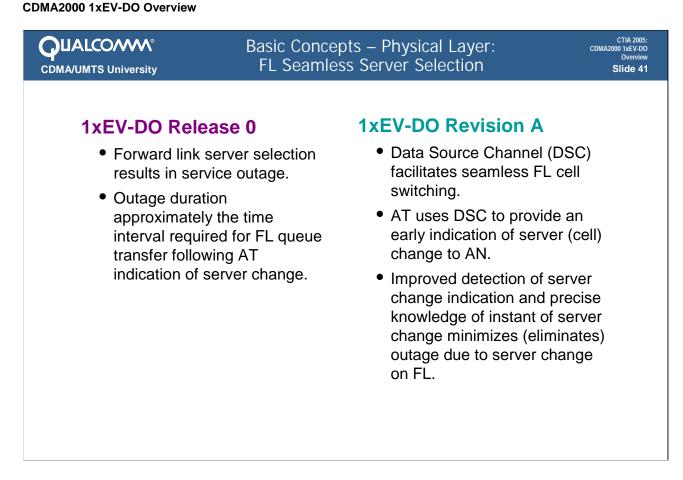

- Packet is at head of queue
- 1xEV-DO Release 0: Physical Layer is idle
- 1xEV-DO Revision A: The desired interlace offset is idle





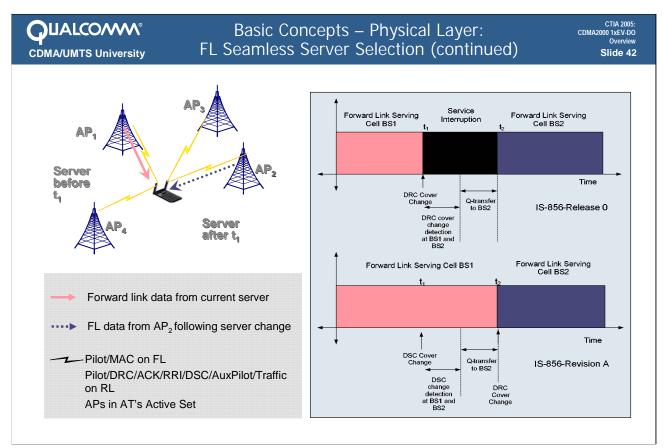
#### CDMA/UMTS University

#### CDMA2000 1xEV-DO Overview





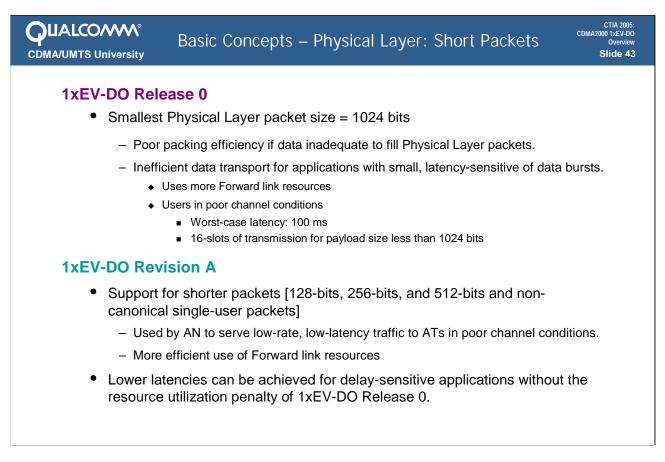

## **Rapid Connection Setup**

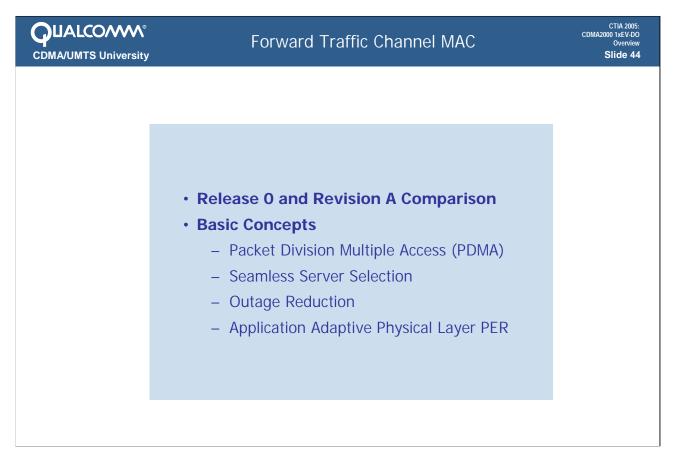

EV-DO Release 0 supported one of two rates for the Control Channel: 38.4 or 76.8 kbps.

| Basic Concepts – Physical Layer:<br>Rapid Connection Setup (continued)                                                                                            | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ontrol Channel packets + Short packets<br>024], [256, 4, 1024], OR [512, 4, 1024]                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ontrol Channel packets allow significantly lower<br>transmit delay<br>4 slots; Typical value = 64 slots<br>de-off between connection setup time and battery life. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| packing efficiency<br>kets transmitted using SCC to a terminal in Idle state.                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>utilization of Forward link resources</b><br>backet provides $E_b/N_o$ margin.<br>e usage = 4-slots compared to 16 slots for 38.4 kbps SCC                     | or AC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>tem access</b><br>to get quick access into the system and obtain control sig<br>n.<br>delay-sensitive applications.                                            | naling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                   | <b>Rapid Connection Setup (continued)</b><br><b>ontrol Channel packets + Short packets</b><br>24], [256, 4, 1024], OR [512, 4, 1024]<br><b>ontrol Channel packets allow significantly lower transmit delay</b><br>4 slots; Typical value = 64 slots<br>de-off between connection setup time and battery life.<br><b>packing efficiency</b><br>Kets transmitted using SCC to a terminal in Idle state.<br><b>utilization of Forward link resources</b><br>Packet provides $E_b/N_o$ margin.<br>e usage = 4-slots compared to 16 slots for 38.4 kbps SCC<br><b>tem access</b><br>to get quick access into the system and obtain control sign. |



# **FL Seamless Server Selection**


The Data Source Channel (DSC) is a key enhancement in EV-DO Revision A.




# FL Seamless Server Selection (continued)

This slide shows the improved sever selection (Forward link handoff) with EV-DO Revision A.

There are several other important points to notice. Although the Forward link data traffic is sent from only one sector at a time, the forward MAC channel is transmitted from every sector in the terminal's current Active Set. This supports the Reverse Power Control (RPC) bits that control the terminal transmit power.



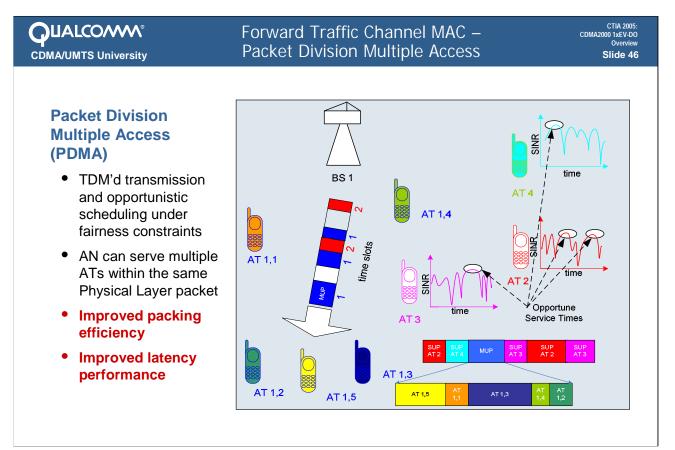


# Forward Traffic Channel MAC

Now we will move up one layer to the MAC layer.

# CDMA/UMTS University

# Forward Traffic Channel MAC – Release 0 versus Revision A

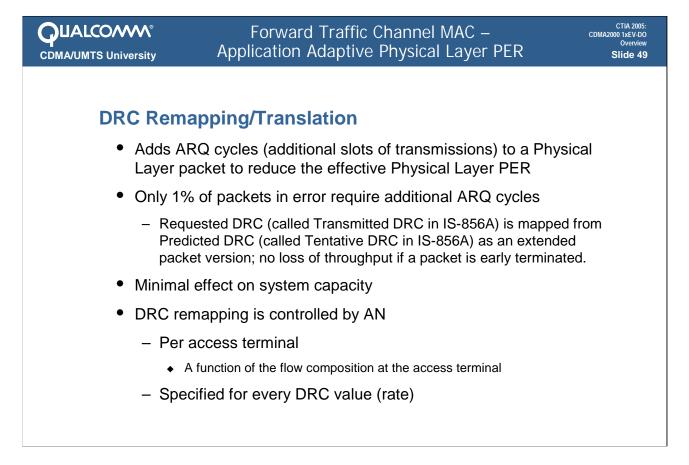

CTIA 2005: CDMA2000 1xEV-DO Overview Slide 45

# **Release 0**

- Entire Traffic Channel allocated to a single user at any given time.
  - Large packet sizes
  - Suitable for delay-tolerant applications, which can be buffered until there is enough data to fill an entire packet
- Interruptions in transmission due to cell switching are acceptable.
- Provides a PER ~ 1%, irrespective of channel/loading conditions, application.
- Always exploit multi-user diversity.

# **Revision A**

- Serve multiple terminals within a single MAC Layer packet.
  - Accomplish CDM (fractional power allocation and simultaneous transmission) as in IS-2000 by TDM (fractional time allocation within a single packet).
  - Improved packing efficiency allows the sector to support more users.
- Eliminate outages due to cell switching.
- Application adaptive Physical Layer PER.
- Exploit multi-user diversity where applicable.




| CDMA/UMTS University                                                  |           | affic Channel MAC –<br>S Server Selection                                                 | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 47 |
|-----------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Release 0                                                             |           | <b>Revision A</b>                                                                         |                                                        |
| <ul> <li>Steps</li> </ul>                                             |           | <ul> <li>DSC (Data Source Contro<br/>Channel provides early</li> </ul>                    | ol)                                                    |
| <ul> <li>AT changes D<br/>indicate servin<br/>change.</li> </ul>      |           | indication of cell switching<br>instant to minimize (or elir<br>service outage for delay- | •                                                      |
| <ul> <li>"From cell" and<br/>must detect ch</li> </ul>                |           | <ul><li>sensitive flows.</li><li>Since serving cell change</li></ul>                      |                                                        |
| <ul> <li>BSC performs<br/>transfer.</li> </ul>                        | queue     | instant is precisely known<br>"From cell" knows exactly<br>when to stop transmission      |                                                        |
| Outage                                                                |           | when to stop transmissior<br>"To cell" knows exactly wh<br>to start transmission.         |                                                        |
| <ul> <li>AT cannot be<br/>packet once B<br/>queue transfer</li> </ul> | SC starts | to start transmission.                                                                    |                                                        |
|                                                                       |           |                                                                                           |                                                        |

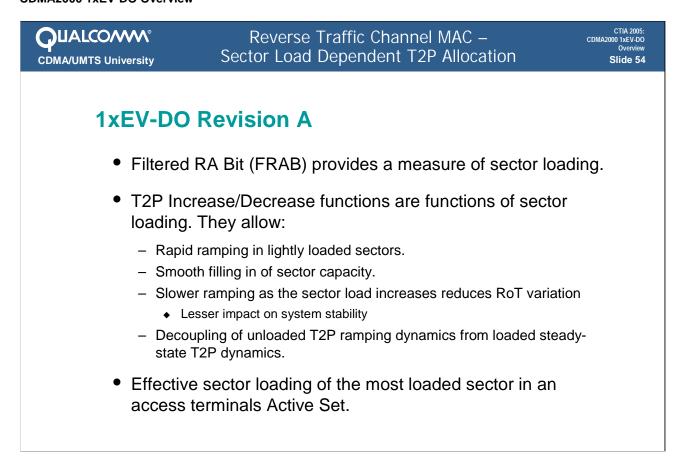
CTIA 2005 Forward Traffic Channel MAC -CDMA2000 1xEV-DO Overview **Outage Reduction** CDMA/UMTS University Slide 48 **Revision A** Release 0 Null-rate DRC conversion Minimum data rate of - Null-rate DRC indices are 38.4 kbps. converted to DRC index = 1• Larger outages for (Nominal Rate = 38.4 kbps). terminals in poor channel - Required to minimize outage conditions, such as for terminals in poor channel conditions. requested data rate less Following Null-rate DRC than 38.4 kbps. conversion, terminals in poor channel conditions can also be served using short packets.

# **Outage Reduction**

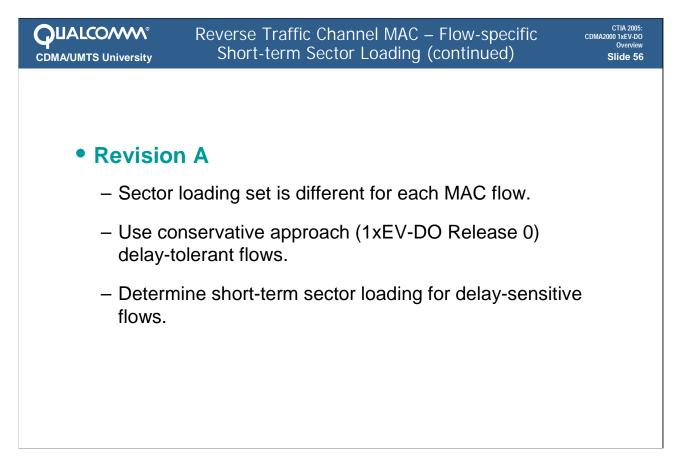
*DRC* is the *Data Rate Control* that is sent from the terminal to indicate the current channel conditions.

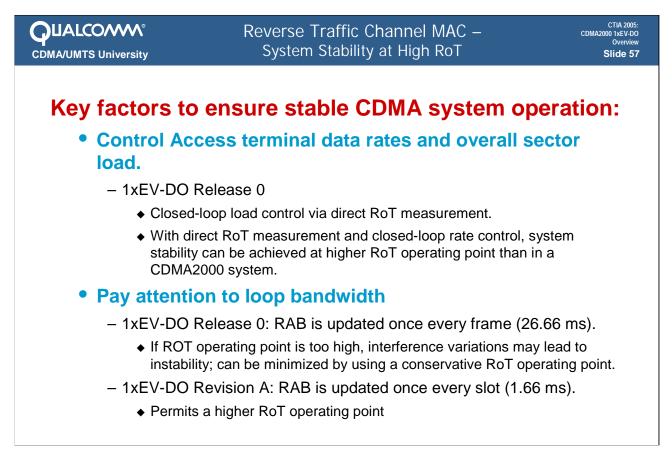


| CDMA/UMTS University | Reverse Traffic Channel MAC                                                                                                                                                                                                                          | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 50 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                      | <ul><li>T2P Control versus Rate Control</li><li>Intra-AT QoS</li></ul>                                                                                                                                                                               |                                                        |
|                      | <ul> <li>Multi-flow Reverse Traffic Channel MAC with<br/>Token-bucket Based Access Control</li> <li>Sector Load Dependent T2P Allocation</li> <li>Flow-specific Short-term Sector Loading</li> <li>System Stability at High RoT Operation</li> </ul> |                                                        |
|                      | <ul> <li>Latency Control</li> <li>Centralized Control</li> <li>Explicit Interference Control</li> </ul>                                                                                                                                              |                                                        |
|                      | MAC Layer ARQ                                                                                                                                                                                                                                        |                                                        |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /erse Traffic Channel MAC – CDMA2000 1642-00<br>Control Versus Rate Control Slide 51                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>1xEV-DO Release 0</li> <li>Rate used as an indicisector resource usage <ul> <li>Rate is the measure contribution of an AT</li> <li>No H-ARQ</li> <li>One-one Rate to T2F</li> <li>T2P constant for entitional for entitional sector resource and the sector resource</li></ul></li></ul> | <ul> <li>RoT</li> <li>T2P is a more accurate measure of RoT contribution of each flow.</li> <li>H-ARQ and different termination goals; no one-one mapping between Rate and T2P.</li> <li>T2P is a function of latency target and payload size</li> </ul> |

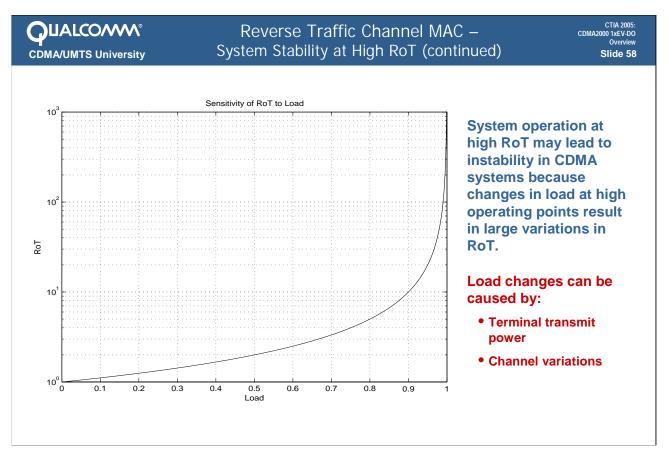
# CDMA/UMTS University

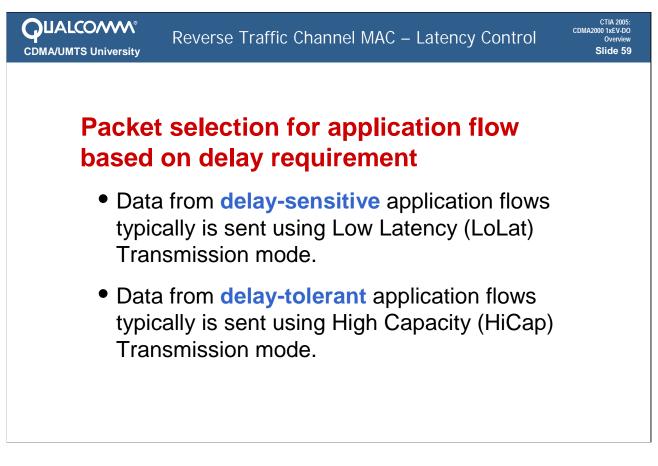

CDMA2000 1xEV-DO Overview


| <ul> <li>1xEV-DO Release 0</li> <li>No Intra-User QoS.</li> <li>All packets transmitted in delay-tolerant mode.</li> <li>Performance of delay-sensitive flows may be affected by presence of delay-tolerant flows.</li> <li>Performance of delay-tolerant glows.</li> <li>Example: Concurrent "ping" and "File Transfer" at AT: "ping delay" is unaffected by presence of File Transfer.</li> <li>Improved performance of bursty data sources.</li> <li>MAC flow priority is a function of the average resource (T2P) used</li> </ul> | CDMA/UMTS University                                                                                                                                                 | Reverse Traffic Channel MAC –<br>Intra-AT QoS                                                                                                                                                                                                                                                               | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 52                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| by that flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>No Intra-User QoS.</li> <li>All packets transmitted delay-tolerant mode.</li> <li>Performance of dela flows may be affected presence of delay-to</li> </ul> | <ul> <li>Intra-User QoS support</li> <li>Performance of delay flows unaffected by prodelay-tolerant flows.</li> <li>Example: Concurrent "Transfer" at AT: "pingor is unaffected by present Transfer.</li> <li>Improved performance sources.</li> <li>MAC flow priority is a the average resource</li> </ul> | r-sensitive<br>resence of<br>'ping" and "File<br>delay"<br>nce of File<br>e of bursty data<br>function of |
| A <i>flow</i> is a source with transmission requirements associated with an application, e.g., videotelephony, VoIP, gaming, Web-browsing, and file transfer.                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                           |                                                                                                           |

| CDMA/UMTS University                                    | Reverse Traffic Channel MAC –<br>Multi-Flow RTCMAC                                                                                             | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 53 |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Reverse Traffic Cha                                     | Innel MAC with Token-based Access                                                                                                              | s Control                                              |
| • Merging                                               |                                                                                                                                                |                                                        |
| <ul> <li>Rules for merg<br/>priorities and s</li> </ul> | ging concurrent flows into a packet, depending on flo<br>sector loading.                                                                       | w                                                      |
| <ul> <li>Merge flows</li> </ul>                         | s with non-homogeneous latency targets if network is lightl                                                                                    | ly loaded.                                             |
|                                                         | lay-tolerant flow with a delay-sensitive flow if the delay-tole smitted within a specified time threshold.                                     | erant flow                                             |
| <ul> <li>Explicit AN con</li> </ul>                     | ntrol allows modifications.                                                                                                                    |                                                        |
| • AT power he                                           | adroom                                                                                                                                         |                                                        |
|                                                         | ophy: Unless PA headroom is limited, always allocat<br>urces to all flows regardless of flow location.                                         | te the                                                 |
| headroom limi                                           | upport transmission of all flows concurrently due to I<br>tations, priority functions specify precise rules for ar<br>rent flows within an AT. |                                                        |
|                                                         |                                                                                                                                                |                                                        |

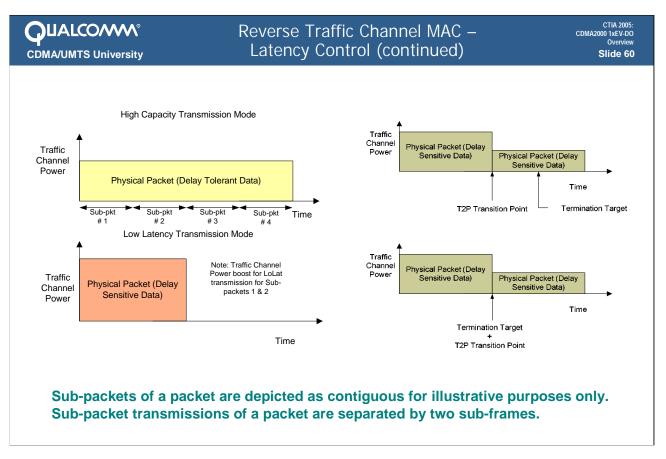




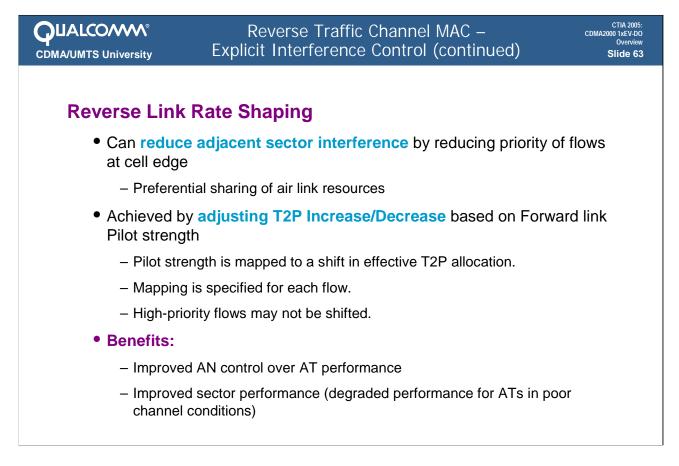


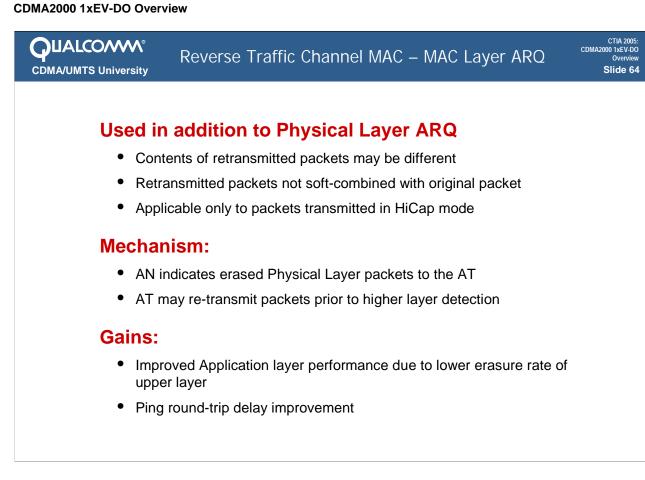

#### CDMA/UMTS University


#### CDMA2000 1xEV-DO Overview



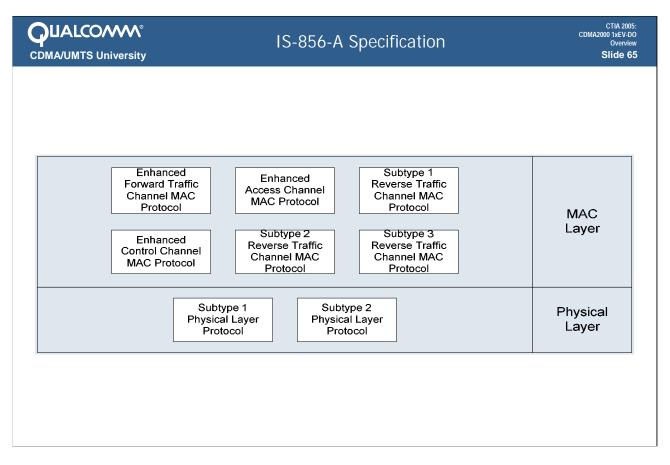



#### CDMA/UMTS University


#### CDMA2000 1xEV-DO Overview



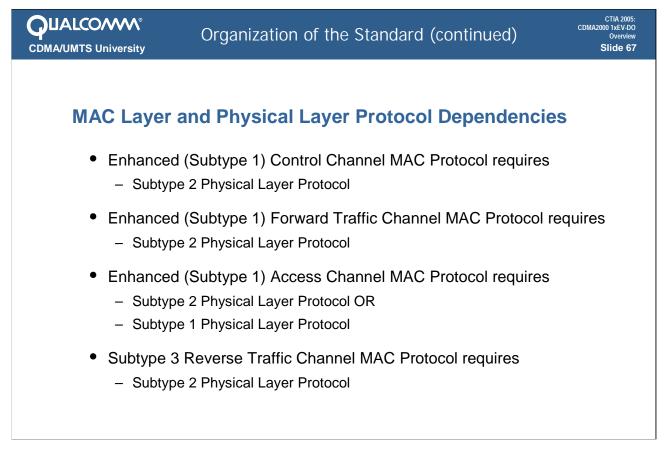
CTIA 2005 Reverse Traffic Channel MAC -CDMA2000 1xEV-DO Overview **Centralized Control** Slide 61 **CDMA/UMTS University** AN can control performance of all flows belonging to an AT using the following tools: 1xEV-DO Release 0 **1xEV-DO Revision A**  Per-flow priority functions based on FRAB and Rate transition probabilities • Forward Channel **RA-bit control** RA bit control • Max allowed rate Max allowed TxT2P . Transmission mode • Termination target per payload size for each ٠ transmission mode • Per-flow RA-bit control parameters - sensitivity of a flow to sector loading Rules for conversion of HiCap flow to LoLat flow • Peak rate transmission - allow or disallow peak • rate transmission for ATs capable of transmitting at peak rate **Explicit Request and Grant** • Interference control

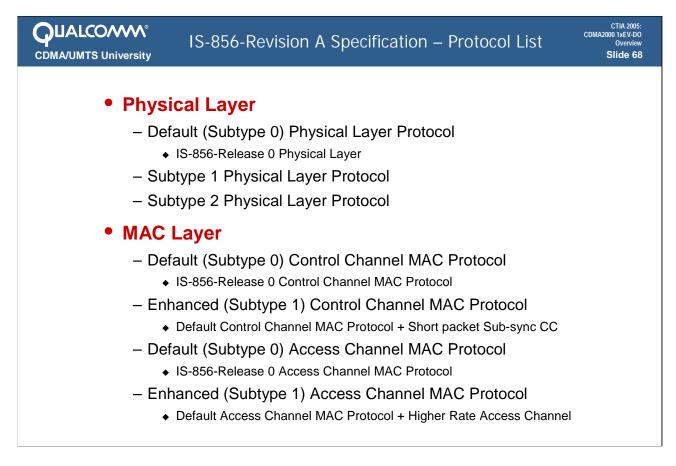

# CTIA 2005 Reverse Traffic Channel MAC -CDMA2000 1xEV-DO Overview **Explicit Interference Control** CDMA/UMTS University Slide 62 IS-856 provides the following explicit interference control mechanisms to the AN: **1xEV-DO Revision A** 1xEV-DO Release 0 TxT2Pmax attribute BroadcastRateLimit message PermittedPayload attribute Unicast RateLimit message - Payload size transmitted in sub-frame n is a function of the minimum of payload sizes transmitted in sub-frames n-1, n-2, and n-3 T2PInflow scaling



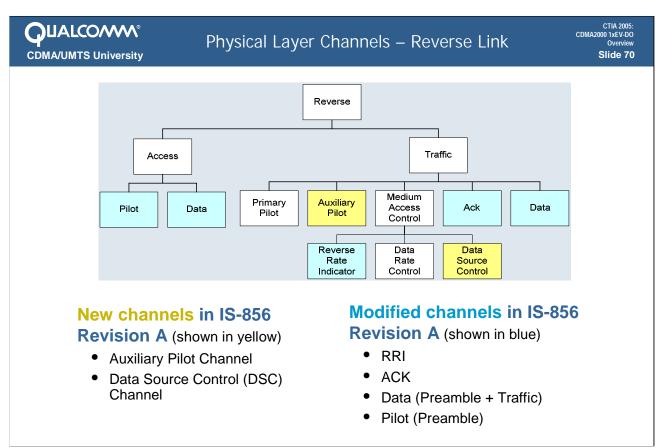


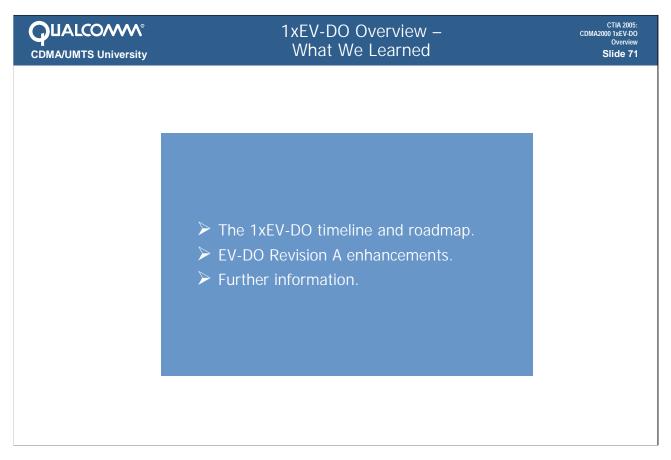
#### CDMA/UMTS University


#### CDMA2000 1xEV-DO Overview




 Organization of the Standard
 Control of the Standard


 Stide 66
 Subtype 1 Physical Layer Protocols


 IS-856-Release 0 Physical Layer
 Support for Enhanced Access Channel MAC Protocol
 Subtype 2 Physical Layer Protocol
 IS-856-Revision A Physical Layer





| QUALCONN®<br>CDMA/UMTS University                                                                                                                   | A Specification – MAC Layer CDMA2000 IXEV-DO<br>Overview Slide 69 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| <ul> <li>Subtype 0</li> <li>– IS-856-Release 0 Reve</li> <li>– Default Physical Layer</li> </ul>                                                    | erse Traffic Channel MAC Protocol                                 |
| <ul> <li>Subtype 1         <ul> <li>Default Reverse Traffic</li> <li>Subtype 0 and Subtype</li> <li>Transition Probabilities</li> </ul> </li> </ul> |                                                                   |
| <ul> <li>Subtype 2</li> <li>IS-856-Revision A Rev</li> <li>Subtype 0 and Subtype</li> </ul>                                                         | erse Traffic Channel MAC<br>e 1 Physical Layer                    |
| <ul> <li>Subtype 3         <ul> <li>IS-856-Revision A Rev</li> <li>Subtype 2 Physical Lag</li> </ul> </li> </ul>                                    | erse Traffic Channel MAC<br>yer Protocol                          |





| CDMA/UMTS University                                                                      | References                                                                                                                     | CTIA 2005:<br>CDMA2000 1xEV-DO<br>Overview<br>Slide 72 |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| <ol> <li>3rd Generation Partnership Proje<br/>Specification", C.S20024-A v0.0,</li> </ol> | ect 2 (3GPP2) "cdma2000 High Rate Packet Data Air<br>March 2004.                                                               | Interface                                              |
| [2] 3rd Generation Partnership Proje<br>Specification", C.S20024 v2.0. Or                 | ect 2 (3GPP2) "cdma2000 High Rate Packet Data Air<br>ctober 2000.                                                              | Interface                                              |
| [3] Rec.ITU-R M.1225 Guidelines fo                                                        | or Evaluation of Radio Transmission Technologies for I                                                                         | MT-2000.                                               |
| [4] P. Bender, et. al. "CDMA/HDR: A<br>IEEE Communications Magazine                       | A bandwidth efficient high-speed data service for noma<br>e, vol.38, pp.70-77, July 2000.                                      | adic users,"                                           |
|                                                                                           | evolution of the cdma2000 Cellular System," <i>Multiacce</i><br><i>nunications: Volume 5</i> , Ed. G. Stuber and B. Jabbari, k | •                                                      |
|                                                                                           | of CDMA/HDR a high efficiency high data rate persor<br>Proc. IEEE 51st Vehicular Technology Conference, T                      |                                                        |
|                                                                                           | pacity Simulation of cdma2000 1xEV Wireless Interne<br>onal Conference on Mobile and Wireless Communicati                      |                                                        |
|                                                                                           | High-Speed Packet Data in Third Generation Cellular S<br>and Mehmet I. Gurelli - <i>European Wireless Conference</i>           | •                                                      |
|                                                                                           |                                                                                                                                |                                                        |

# CDMA2000 1xEV-DO Overview CTIA 2005 CDMA2000 1xEV-DO Overview References CDMA/UMTS University Slide 73 [9] Eduardo Esteves, "On the Reverse Link Capacity of cdma2000 High Rate Packet Data Systems," ICC, 2002. [10] Nagabhushana T. Sindhushayana and Peter Black, "Forward Link Coding and Modulation Design for cdma2000 1xEV (IS-856)," PIMRC 2002, Lisbon, Portugal, September 2002. [11] Sumantra Chakravarty, Rajesh Pankaj and Eduardo Esteves, "An Algorithm for Reverse Traffic Channel Rate Control for cdma2000 High Rate Packet Data Systems," GLOBECOM2001, San Antonio, TX, November, 2001. [12] Peter J. Black and Qiang Wu, "Link Budget of cdma2000 1xEV-DO Wireless Internet Access System," PIMRC 2002 (Communication Theory: 3G/4G Technologies), September, 2001. [13] 3GPP2 TSG-C WG3, 1xEV-DO Evaluation Methodology, 3GPP2 TSG-C Contribution C30-20031002-004, October, 2004. [14] Jitendra Padhye, Victor Firoiu, Don Towsley, Jim Kurose, "Modeling TCP Throughput: A Simple Model and its Empirical Validation," ACM SIGCOMM, 1998. [15] Jani Lakkakorpi, Andreas Heiner, Jussi Ruutu, Nokia Research Center, "Measurement and characterization of Internet gaming traffic," 3GPP2-C30-20030113-023A. [16] Qiang Wu and Eduardo Esteves, Chapter 4, "Advances in 3G Enhanced Technologies for Wireless Communications," editors Jiangzhou Wang and Tung- Sang N, March, 2002.



#### Summary

Several interesting presentations available at:

www.cdg.org/news/events/CDMASeminar/050208\_VoIP\_Summit/index.asp