

Trans-Oceanic Backbones Basic Techniques

- Six Techniques used by the Internet Community to scale bandwidth:
 - J Bigger Circuits
 - ✓ Inverse Multiplexing
 - ✓ Clear Channel E3 or DS3
 - ✓ PPP over SDH
 - ✓ Asymmetrical Satellite Systems
 - Hybrid Systems

Trans-Oceanic Backbones Basic Techniques

Trans-Oceanic Backbones Basic Techniques

Pearl: It helps to work directly with the people who do the international transmission capacity planning and purchasing. They get to see your projections, you get on time upgrades.

Trans-Oceanic Backbones Basic Techniques

- Inverse Multiplexing (iMux) takes several circuits and *bundles* them into one or more logical circuits.
- Two major techniques:
 - ✓ Use protocol/forwarding features in the router
 - ✓ Use an external inverse multiplexer

Trans-Oceanic Backbones Basic Techniques

Router protocol/forwarding features as iMux

Parallel Links Across the Ocean. n x E1 circuits between the routers using the routing protocols to perform the load balancing and bundling of the parallel circuits - works up to 4 to 8 E1s.

Trans-Oceanic Backbones Basic Techniques

Several Techniques:

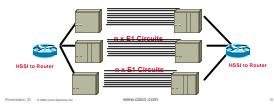
- Static Route Per Packet
- OSPF

n ID © 1222. Cia

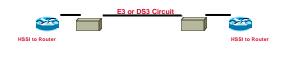
- eBGP Multihop Per Flow (w/ Netflow & CEF) or Per Packet (w/ CEF)
- Multi-Link PPP (MLPPP) Tighter Bundling Options (up to 8)

www.cisco.com

- ✓ CEF Load Balancing Per packet or per flow
- J BGP Maximum Paths (up to 6 different routers)


Trans-Oceanic Backbones Basic Techniques

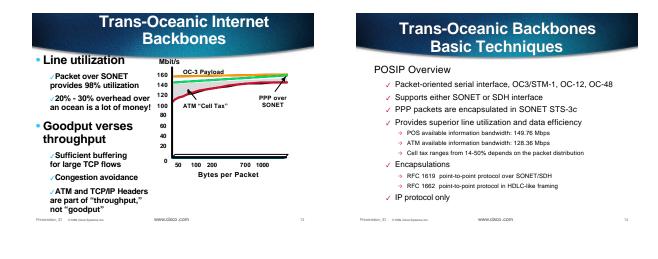
- Many Telcos have not provisioned facilities to cater to oceanic circuits above E1.
- Many E1s grouped together into a larger pipe via iMUX technology.
- ✓ Defacto Industry practice is to use Cisco Routers with HSSI ports connected to Larscom's Orion 4000 iMUXes.


Trans-Oceanic Backbones Basic Techniques

- Several iMUX bundles can be grouped together on the same router to build 34M and 45M equivalent circuits
- $\checkmark\,$ eBGP Multihop is the preferred load balancing technique.
- ✓ Telstra Internet is now over 100M of iMUX backbone bandwidth!

Trans-Oceanic Backbones Basic Techniques

- Clear Channel E3 (34M) or DS3 (45M)
 - Preferred method for high speed backbone links is a clear channel circuit.
 - Configuration is simple connect the CSU/DSU to a HSSI/T!/E1 port on a Cisco router.



Trans-Oceanic Internet Backbones

- What do you do after DS3 (45M)?
 - ✓ Multiple DS3?

on ID © 1999, Ciaco Systems, Inc

- ✓ ATM at OC-3 (155M) or OC-12 (622M)?
- ✓ PPP over SDH at OC-3 (155M) or OC-12 (622M)?
- ATM vs PPP over SDH (POSIP)
 - ✓ ATM is <u>not</u> the best choice when all you are doing is Internet traffic across the ocean.

- First 155 M Internet link across an ocean!
- First operational 155M POSIP connection!
- Second is from Japan to US

ntation ID © 1999, Ciaco Systems, Inc

Trans-Oceanic Backbones Basic Techniques

- If an ISP's trans-oceanic traffic pattern is always asymmetrical, then why pay for that idle bandwidth going out?
 - Asymmetrical traffic pattern is when the ISPs is pulling down more information than sending out. Today a typical ISP is somewhere between a 80:20 - 60:40 traffic ratio to the US.
- Satellite Services allow ISPs to buy a circuit with different speeds in the two different directions.

For example - 2 Mbps in / 256 Kbps out

 Hence the ISPs only pays for what they need - no idle bandwidth giving the other side a free ride.

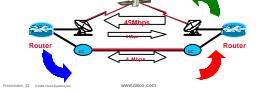
Trans-Oceanic Backbones Basic Techniques

www.cisco.com

- Trans-Oceanic ISP links are a reality. They work and are used to backup terrestrial trans-oceanic links.
- Latency issues (around 700 ms RTT) can be minimized through creative

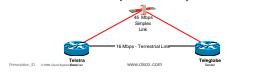
Trans-Oceanic Backbones Basic Techniques

- Minimizing Latency on Asymmetrical Satellite Links:
 - Good Traffic Engineering (i.e. avoid congestion)

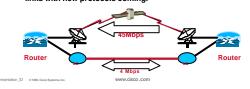

www.cisco.com

- ✓ Hybrid Asymmetrical Links
- ✓ Hybrid Simplex Links
- WWW Caching
- Content Routing

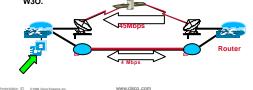
D own


Trans-Oceanic Backbones Basic Techniques

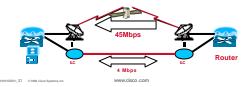
- Hybrid Asymmetrical Satellite links combine terrestrial and satellite together.
 - ✓ Reduces the latency by 1/3 to 1/2.
 - Static, BGP filtering, or eBGP multihop is used to manage the links _____

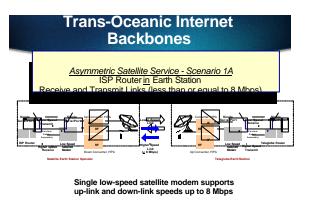

Trans-Oceanic Backbones Basic Techniques

- Telstra and Teleglobe were the first two ISPs who pioneered this technique.
 - Several other ISPs in Asia and Europe are using this technique.
- ✓ Very few Tier 1 & 2 NSPs in the US will terminate these trans-oceanic systems - hence the growth of co-lo business (I.e. AboveNet)


Trans-Oceanic Backbones Basic Techniques

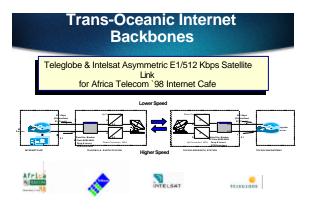
- Hybrid Simplex Satellite links combine terrestrial and satellite's capability to for a circuit with only direction..
 - ✓ Takes advantage of uni-directional nature of satellite circuits
 - ✓ Reduces the latency by 1/3 to 1/2.
 - Static, BGP filtering, or eBGP multihop is used to manage the links with new protocols coming.


Trans-Oceanic Backbones Basic Techniques


- WWW Caching adds an additional "buffer" to the higher latency.
 - ✓ Caches content as it comes over the link.
 - ✓ Minimizes the download of the same content over and over again.
 - WWW Caching is a main stream Internet technology all issues with it's use have been resolved via technical means via IETF and W30.

Trans-Oceanic Backbones Basic Techniques

- Since asymmetrical systems will limit any "free rides" from people who should be paying for the traffic from the ISP to the world.
 - ✓ The system is designed around the ISP's traffic profile.
 - Choke point in the ISP's space limits excessive pull from the other side.

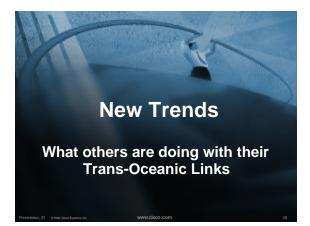

www.cisco.com

Slides courtesy of Teleglobe

Copyright @ 1998, Cisco Systems, Inc. All rights reserved. Printed in USA. Presentation_ID.scr

	Trans-Oce Bacl		
	<u>Asymmetric Satell</u> ISP Route Receive Link to IS Transmit Link from	r in Ear SP (grea	th Station ater than 8 Mbps)
ISP Rout	Higher Speed Satellite Receive Modern Down Converter, HPA	Lower Speed Link (> 8 Mbps) Higher Speed Link (> 8 Mbps)	
	Satellite Earth Station Operator		Telegiobe Earth Station
			e modem supports eeds up to 45 Mbps

Slides courtesy of Teleglobe


Trans-Oceanic Internet Backbones

Equipment Issues

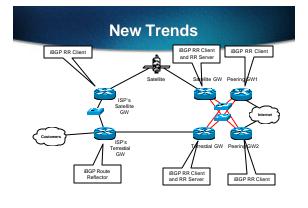
ation_ID © 1999, Cisco Systems, Inc.

- ✓ Need a interface card in a router with lots of buffering. VIP2-50 with max memory connected to a HSSI PA or POS PA (DS-3) are known to work.
- Need Random Early Detection (RED). Needed to insure effective utilization of the link.

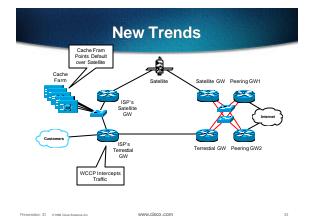
www.cisco.com

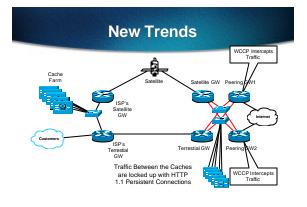
New Trends

- Co-Location or Lease of Router in the US.
- Dual Sided Content Routing.
- Heavy Localization of traffic (IXPs)


www.cisco.com

New Trends


- ISP's Trans-Oceanic Backbones are migrating into systems designed to get maximized efficiency from the link.
- High Cost of trans-oceanic bandwidth, Exponential Growth, and new demand for Value Added Services (QoS, Content Routing, and VoIP) are all driving factors.


New Trends

- These Trans-Oceanic Systems will consist of:
 - ✓ Mix of Satellite and Terrestrial Circuits
 - WWW Caching and Performance Enchanting Proxies
 - ✓ QoS Services (Premium and Basic)
 - Application Redirection (Voice and Multicast)

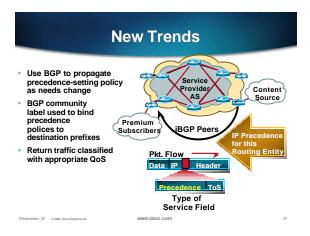
www.cisco.com

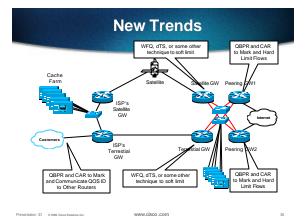
New Trends

- HTTP 1.1 Persistent connections between the two caches move the average packet size from ~40 bytes to 512 - 1500 bytes.
 - ✓ More Goodput vs Overhead

n ID © 1999. G

- Satellite Modifications to TCP increase efficiencies (RFC 2488 or equivalent)
- Technique is also called Performance • Enhancing Proxies (PEP)


www.cisco.com


✓ draft-ietf-pilc-pep-00.txt

New Trends

- Any QoS, CoS, or DiffServ tools need to be applied on the upstream router's interface.
- Applying the tools on the *downstream* side would force the ISP to pay for the packets before they are dropped.
- Most US NSPs are reluctant to apply any special configurations on the US side.

New Trends

• What's Next?

ation ID © 1999. Cisco Systems, Inc.

- VoIP and IP Telephony. Using routing tricks or NPR (Netflow Policy Based Routing) to keep voice traffic on the terrestrial circuits.
- Content Replication. Pushing content from the international side to the US side of the link.

www.cisco.com

Collecting and Reporting Capacity Information

Internet Traffic Measurement

- Aggressive collections and analysis of network data is critical to any ISPs who wishes to tackle the problems of CoS, QoS, and I3F
- Ironically, most ISPs do not collect this information, even when most of the tools are public domain on the Internet.
- The concern is that so many people are talking about buzzword and not enough about the fundamentals of what is actually happening on the Internet.

ion ID © 1999. Cisco Svatema, Inc

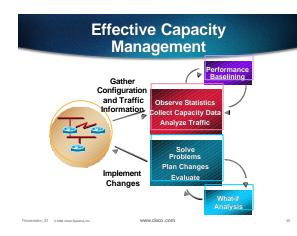
Performance Management and Capacity Planning Definitions

Capacity planning

- The process of determining the likely future network resource requirements to prevent a performance impact on business critical applications
- Performance management
 - The practice of managing network service response time, consistency and quality for individual services and services overall

www.cisco.com

Increasing Importance of Capacity Planning


- Frequent application deployment failure
- Increased reliance on network services for business applications
- Exponential growth in business and nonbusiness related traffic
- Network Failure is typically capacity related

www.cisco.com

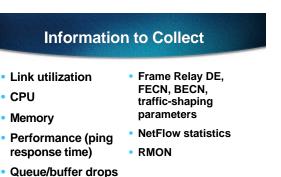
Capacity Related Risks

- Network degradation and failure
- Application timeouts and failure
- Application performance degradation

www.cisco.com

Resource Constraints or Bottlenecks

- CPU
- Memory


Broadcast volume

- Buffering, queuing and latency
- Interface and pipe sizes
- Speed and distance
- Application characteristics

www.cisco.com

Collecting and Reporting Capacity Information

www.cisco.com

Copyright $\textcircled{\mbox{\scriptsize opt}}$ 1998, Cisco Systems, Inc. All rights reserved. Printed in USA. Presentation_ID.scr

Resource	Address	Segment	Avg. Util (%)	Peak Util (%)
JTKR01S2	10.2.6.1	128 Kbps	66.3	97.6
JYKR01S0	10.2.6.2	128 Kbps	66.3	97.8
FMCR18S4/4	10.2.5.1	384 Kbps	51.3	109.7
PACR01S3/1	10.2.5.2	384 Kbps	51.1	98.4

ID © 1999. C

ion ID © 1999. Ci

ID © 1999. Ci

Link Utilization

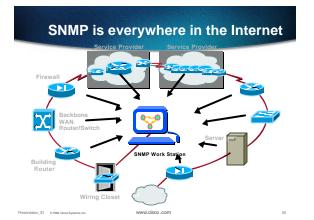
CPU Utilization

Resource		Polling Address	Avg. Util (%)	Peak Util (%)
FSTR01		0.28.142.1	60.4	80
NERT06		10.170.2.1	47	86
NORR01	1	0.73.200.1	47	99
RTCR01		0.49.136.1	42	98

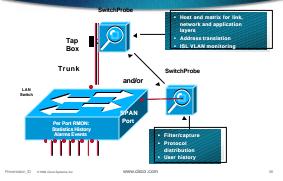
Performance	
(Ping Response Time)	

Resource	Address	AvRes T (mS) 09-09-98	AvRes T (mS) 09-09-98	AvRes T (mS) 09-24-98	AvRes T (mS) 10-01-98
AADR01	10.190.56.1	469.1	852.4	461.1	873.2
ABNR01	10.190.52.1	486.1	869.2	489.5	880.2
APRR01	10.190.54.1	490.7	883.4	485.2	892.5
ASAR01	10.196.170.1	619.6	912.3	613.5	902.2
ASRR01	10.196.178.1	667.7	976.4	655.5	948.6
ASYR01S					503.4
AZWRT01	10.177.32.1	460.1		444.7	
BEJR01	10.195.18.1	1023.7	1064.6	1184	1021.9

www.cisco.com


Three Essential Tools

- <u>Simple Network Management</u> Protocol (SNMP)
- <u>R</u>emote <u>MON</u>itoring Protocol (RMON)
- <u>NetFlow</u> Flow Based TCP/IP Analysis


Traffic Management Elements

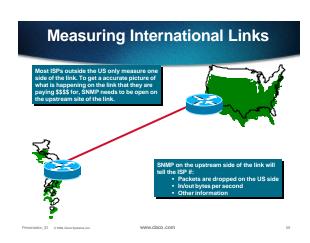
- Data collection mechanisms on network equipment
- Data export mechanisms to applications
- Data analysis and visualization

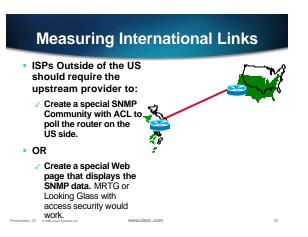
Network Monitoring with RMON

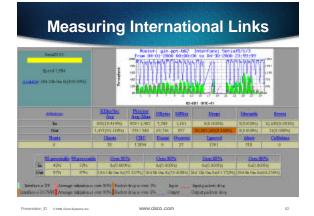


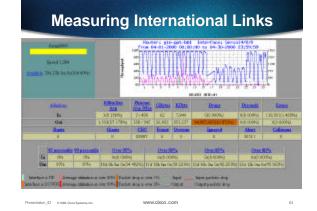
Traffic Analysis on: Link, Network and Application Layers

- Aggregate and historical statistical analysis for switched segments
 Bandwidth utilization
 - Error analysis
 - Broadcast levels


ion ID © 1999. Ci

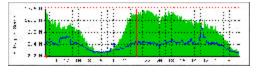

Baseline analysis


Top hosts by any of the following metrics: Packets sent or received Octets sent or received Broadcasts sent Multicasts sent Errors generated


www.cisco.com

Date: Date: <th< th=""><th></th><th></th><th>والمباد</th><th>1.1</th><th></th><th></th><th>Щ</th><th></th></th<>			والمباد	1.1			Щ	
Image: Control of the second		and a	Witness	Lange and	-	ar art-to	Carrier Contract	
Con (1902) 1911 (1912) (1913) 754 2251,5345 (1915) (1913) 001 (1914) Barts Class CBC Date Date Lange Mon College	2000	403		Likese	STOCH.	Denas	Unterity	Rent
Basti Glass (280 Date Storte Spins Man Californi	36	1,11936-01290	1,2777.2,083	32,829	8,117	101.00.84j	COLUMNS.	7.396.8110.2029
	. O#	1.190(399.99794)	291/473	34,855	794	22334340 M2H0	DOL 000794	COPPOS 1995
4 IETY 754348 2659 440 4 4485 4	Bati	and the second se	and the second second	Date -		Tanned		California
	10100	1877	7543438	M89.	4.43	-	4485	1
Mammak Mananite Des 20% One 5% Des 20% Des 20%	Manurale Manur	ander Dere 20	-	Com Bil		0.00.001	- Over S	-

Fundamental Tools are Cheap!


- The tools to create a simple network manage system that will give an ISP the basics comprise of the following:
 - ✓ PC with LINUX (free UNIX)
 - ✓ CMU SNMP (free SNMP)
 - ✓ PERL5 (free UNIX script language)

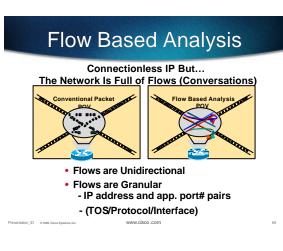
www.cisco.com

- ✓ GNU Plot (free graphic plot tool)
- 🗸 Printer

Fundamental Tools are Cheap!

• Example of what can be done with another Shareware tool - MRTG

1


Fundamental Tools allow for the Baseline!

- Baseline Quality Levels are critical for any ISP Server.
 - Average Utilization and Packet Loss need to be monitored on the entire network.
 - QoS Threshold need to be set and acted on to maintain any sort of foundation to build advanced IP services. This is *ISP 101* which most new ISPs forget!
 - All you need is SNMP! It's not rocket science.

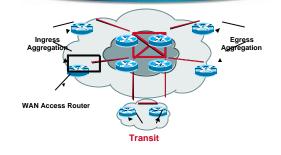
Limitations of SNMP and RMON

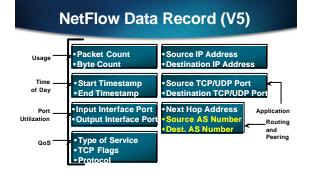
- SNMP and RMON will tell you what is happening on the network (I.e. load, PPS, packet drops).
- SNMP and RMON will not tell you <u>who</u> is doing <u>what</u> to <u>where</u> and <u>when</u>.
- For that sort of details, *TCP/IP Flow* Based Analysis is needed.

Flow Based Analysis

- Key IETF work:
 - Real Time Traffic Flow (RTFM) working group
 - http://www.auckland.ac.nz/net/Internet /rtfm/
 - ✓ IP Provider Metrics (IPPM)
- Public Domain and Commercial Tools now available.

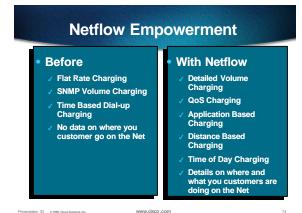
Flow Based Analysis

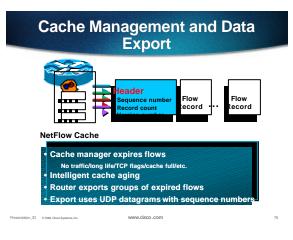

Key Tools Used Today

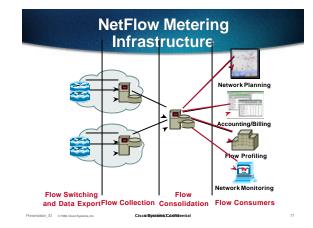

on ID © 1999, Cisco Sv

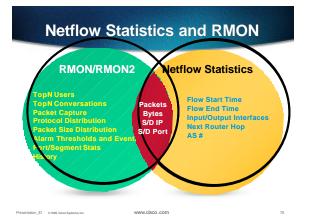
- NetScarf Global and Regional Internet Analysis project (http://www.merit.edu/~netscarf)
- Traffic Flow Analysis NLANR (http://www.nlanr.net)
- ⇒ NetFlow Analysis and IP switching technology build into Cisco's IOS.
- NeTraMet Free Flow analysis software. (http://www.auckland.ac.nz/net/Accounting/ntm.Release .note.html)
- Many new Netflow based commercial tools

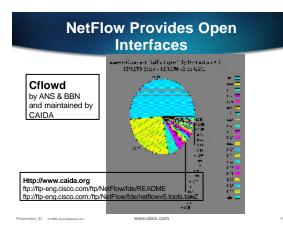
www.cisco.com

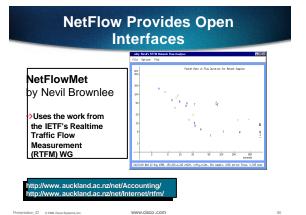

Flow Activation Locations

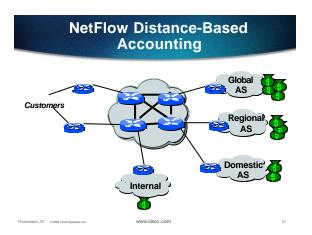

www.cisco.com


ntation ID © 1999, Claco Sv




Protoc		1 141949 secons Tota Flows	I Bow	Packets / Flo		Bytes / Pkt	Packets / Sec.	Act	ve Sec / Flow	ldie Se / Flo
TCP -	Teinet FTP WWW SMTP X	267,03 1,030,83 554,96 32,107,85 3,526,23 9,60	7 7. 7 3. 8 226. 1 24.	2 1 9 16 2 1 8 1	0 4 5 3	75 78 345 247 159 129	439.3 76.6 641.3 3610.6 323.1 8.2		182.6 22.6 52.7 13.5 10.2 148.2	36 43 15 28 23 55
UDP -	BGP other TFTP DNS	111,09 5,729,17 2,39 12,875,07	2 40. 8 0. 7 90.	3 7 9	3	77 220 62 110	11.5 2858.1 0.0 195.4		229.2 71.0 13.4 5.4	61 41 69 43
ICMP IGMP IPINIP IP -	other	1,489,07 665,77 5,14 4,45 2,69	1 4. 4 0. 0 0.	6 1 0 1 0 93	2	293 259 278 377 136	321.8 62.8 0.6 29.2 0.2		28.5 75.7 82.4 166.7 80.8	68 66 64 61
TOTAL		58,381,40	0 411.	3 2	D	227	8579.4		0.0	0
Sec.	Source IP Address	Des		P	n Sec Part	Des Part	Pkts	Rytes/	Act Sec / Elow	Idla Sec / Elow
H43/ F20/ H43/	0 204.119.13	4.49 Fd -2 RG	b/0 142.35.4	.36	0050	0610	1 12 745	44 105 542	0.0 9.1 323.0	0.6 1.0 0.0


• CI I	summary	traffic characterization
o Systems and	summary	trainescharacterization

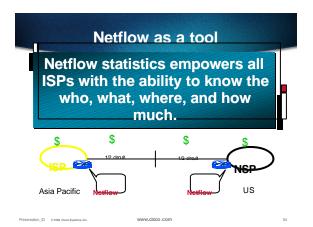


NetFlow Distance-Based Accounting

 General Information page for Cisco Netflow services:

<u>http://www.cisco.com/warp/public/732/netflow/</u>

- Cisco's NetFlow FlowCollector v2.0 and NetFlow FlowAnalyzer v2.0:
- ✓ <u>http://www.cisco.com/warp/public/732/netflow/netan_o</u> v.htm
- Case Study How to implement Netflow in a network. Traffic Accounting Using Netflow and Cflowd by Roberto Sabatino (DANTE/TEN-34)


www.cisco.com

<u>http://www.dante.net/pubs/dip/32/32.html</u>

NetFlow Distance-Based Accounting

• 3rd Party Solutions:

- ✓ Belle Systems <u>http://www.belle.dk</u>
 ✓ Solect http://www.solect.com
- ✓ XACCT Technologies <u>http</u>
- ✓ Apogee Networks, Inc.
- 🗸 Rodopi
- http://www.xacct.com http://www.Apogeenet.com
- http://www.rodopi.com

Conclusions

- Aggressive measurement and analysis is critical to an ISPs and the Internet's survival.
- Not enough measurement and actual data analysis is taking place on the Internet. Too many people are speculating with weak data to back up their claims.

www.cisco.com

Capacity and Performance **Best Practices**

What-If Analysis Simulation applications Gather Configuratio and Traffic Lab application modeling Protocol analyzer, Informatio WAN emulator, packet generator, NETSYS performance analyzer Lab network modeling VVS/NVT, lab network Changes modeling

tion ID © 1999, Cisco S

Service Level Management

- Define performance requirements
- Define Upgrade criteria by capacity area
- Measure capacity and performance

www.cisco.com

- **Review thresholds and baseline**
- Take action!

on ID © 1999, Ciaco Svi

Service Level Management

www.cisco.com

Threshold	WAN	LAN
CPU	75-90%	75-90%
_ink	80-90%	40-90%
lemory	50%	50%
Output Queue	200	25
Buffer Misses	Any	Any
Broadcast Vol	10/Sec	300/Sec
ECN/BECN	10/Sec	N/A

www.cisco.com

Peak and Average Utilization

www.cisco.com

- Solution to narrow collection interval
- Low collection interval = high overhead
- (Threshold) Recommend >=5 Capacity Parameter minutes
- Peak values not quite what they seem
- **Close to threshold** indicates likely exceed condition

Time in Collection Intervals

Copyright © 1998, Cisco Systems, Inc. All rights reserved. Printed in USA. Presentation_ID.scr

Capacity Exception Management

- Alarm critical capacity thresholds (CPU, critical link)
- Develop notification, escalation and action plan for threshold violations

www.cisco.com

• Take action!

n ID © 1999. C

on ID © 1999, Cisc

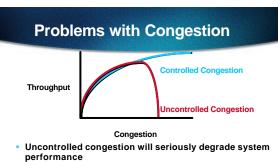
Performance and Capacity Baselining

- Interface utilization
- Device CPU, memory, buffer, I/O utilization
- Network overhead
- Raw performance characteristics
- Monthly or quarterly baseline report

Upgrade Planning

- Understand lead times for circuits, equipment, planning and design
- upgrade criteria based on service level management

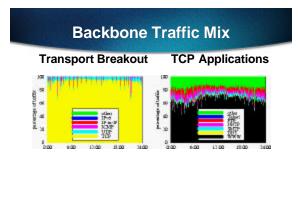
www.cisco.com


QoS Management

www.cisco.com

- Prioritize applications by business impact
- Understand networked application behavior (packet size, timeouts, flows, bandwidth requirements)
- Develop QoS management plan

www.cisco.com



The system buffers fill up

on ID © 1999, Ciaco Svat

- Packets are dropped, resulting in retransmissions
- $\checkmark\,$ This causes more packet loss and increased latency
- The problem builds on itself until the system collapses

Source: MCI/NSF OC-3MON via http://www.nlanr.net, 1998

TCP Technology Issues Single drops communicate from network to sending host "You need to slow down"

- Multiple drops in round trip trigger time-outs
 - "Something bad happened out here"

www.cisco.com

Behavior of a TCP Sender Sends as much as credit allows Starts credit small Avoid overloading network queues Increases credit exponentially ✓ To gauge network capability

Behavior of a TCP Receiver

- When in receipt of "next message," schedules an ACK
- When in receipt of something else, acknowledges all it can immediately

Sender Response to ACK

www.cisco.com

 If ACK acknowledges something

tion_ID © 1999, Cisco Systems, Inc.

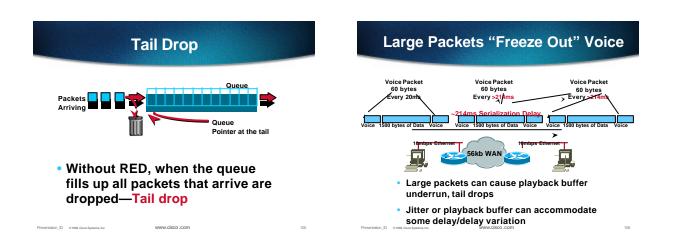
- Update credit and send
- Send first unacknowledged message right away
- Halve current credit
- ✓ Increase linearly to gauge network throughput

Multiple Drops in TCP

www.cisco.com

 In the event of multiple drops within the same session:

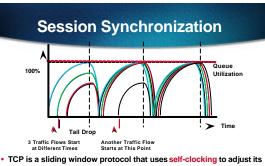
- ✓ Current TCPs wait for time-out
- Selective acknowledge may work around (but see INFOCOM '98)
- ✓ New Reno "fast retransmit phase" takes several RTTs to recover www.cisco.com



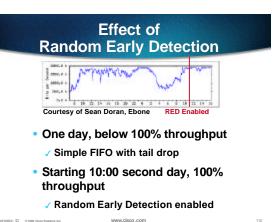
How Can We Make TCP in a **Network Act Predictably?**

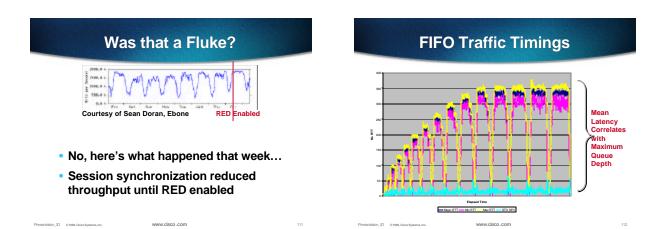
- Predictable amount of traffic in the network:
 - ✓ Well-written TCP implementations manage their rates to the available bandwidth
- Router needs to
 - Provide predictable treatment of packets
 - Queue delay and drop characteristics

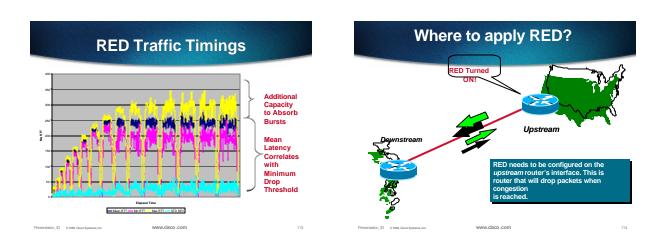
Fundamental FIFO Queue Management Technologies


- Tail drop
 - Vetwork standard behavior
 - ✓ Causes session synchronization when waves of traffic experience correlated drops
- Random Early Detection (RED)
 - Random drops used to desynchronize TCP sessions and control rates

 Tail drop from waves of traffic synchronizes losses






- use of the network to match available bandwidth using slow-start and congestion avoidance algorithm
- Session synchronisation is when many TCP connections go through TCP Slow-Start mode at the same time

Random Early Detection (RED)
Packets
Queue Pointer
• With RED, as oppose to doing a tail drop, the router monitors the average queue

- drop, the router monitors the average queu size and using randomization it chooses connections to notify that a congestion
- is impending
- Mote: Avg. queue size is not an

Applying RED/WRED

Enabling WRED

- [no] random-detect <weight-constant>
- weight-constant = <1-16> is an integer used in weighted average to mean 2[^]weigh-constant. 10 is the default.
- Tuning weight constant affects loss rate ✓ rule-of-thumb:
 - / DS-3/OC-3 Links: Value of 10 might achieve ~10^-4 drop rate, recommended for DS-3/OC-3 link.
 - T1/E1 Links: Value of 7 might achieve a loss rate around 10^-
- Actual recommended value should be determined in real operational network. D © 1999, Cisco Systems, Inc. www.cisco.com

Therefore—TCP QoS **Definition:**

- Normally at most one drop per round trip
- Mean variation in latency bounded by predictable network

www.cisco.com

TCP Flow Statistics

- >90% of sessions have ten packets each way or less
 - Transaction mode (mail, small web) page)
- >80% of all TCP traffic results from <10% of the sessions, in high rate bursts
 - It is these that we worry about managing www.cisco.com

An Interesting Common Fallacy about RED:

- "RED means you will have more drops" Statement derives from observed statistics
- RED means that you will have
 - Closer to 100% utilization of your line
 - ✓ Less average delay per packet
- But queuing theory?

ion ID © 1999. Ci

ion ID © 1999. Ci

tion ID © 1999. Cisco Systems, Inc.

As a line approaches 100% utilization, drops will increase, even though served load increases

www.cisco.com

TCP Traffic Management Issues

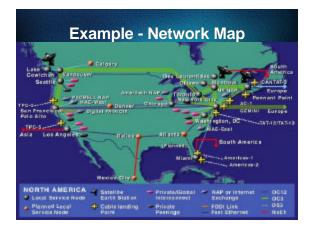
- Applications
 - ✓ Often have site-specific policy associated with them
 - Traffic often identifiable by port numbers
- Sites

ID 0.100 Class Russess Inc

Generally identifiable by address prefix or interface traffic is received on www.cisco.com

TCP Bandwidth Policy Questions to Answer

- Particular site or application wants at least a certain bandwidth
- Particular site or application wants at most a certain bandwidth
- Particular site or application wants to average about a certain bandwidth



Preparation

- List all potential providers
- Get Maps of oceanic cable systems
- Get Maps of satellite foot prints.

What to ask from the prospective providers?

- Network Maps with landing/termination points of your links.
- List of IXPs and Private Peers
- URLs of NOC Pages
- Do they lease routers and/or colocations space?
- Do they have upstream caches?

What to require from the Upstream Provider

- Statistics Page and Weekly Reports
- 24x7 NOC Contacts
- RED or WRED on their router's interface
- CAR ICMP Rates Limits for DoS Protection
- Back-up contingencies in writing.

