

Agenda

- Rational Behind ISP Network Design
- Point of Presence Topologies
- Adding Services to the Architecture

www.cisco.com

Impact of Services on the Network

The Free On-line Dictionary of Computing

Architecture: Design; the way components fit together; it may also be used for any complex system, e.g. "software architecture", "network architecture"

www.cisco.com

Network Design and Architecture...

- ... can be critical
- ... can contribute to the success of the network
- ... can contribute to the failure of the network

Ferguson's Law of Engineering

"

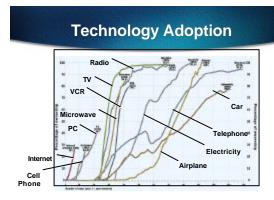
No amount of magic knobs will save a sloppily designed network

www.cisco.com

Paul Ferguson—Consulting Engineer, Cisco Systems

What Is a Well-Designed Network?

- One that takes into consideration some main factors
 - Topological/protocol hierarchy
 - Redundancy
 - ✓ Addressing aggregation (IGP and BGP)
 - Scaling
 - Policy implementation (core/edge)
 - ✓ Management/maintenance/operations


www.cisco.com

🗸 Cost

One Must Acknowledge that...

- Two different worlds exist
 - One world revolves around private organizational networks and another concerns the global Internet
- Growth in the Internet is faster than any other technology introduced to the public-at-large

www.cisco.com

Scaling is the #1 Problem on the Internet

If you're not scared yet, you don't understand the problem!

www.cisco.com

...

Core Influences to ISP Design

www.cisco.com

- Modular Design
- Functional Design
- Tiered/Hierarchical Design
- Multiple Levels of Redundancy
- Routing Protocol Hierarchy
- Build for IP Forwarding First then add services

into separate and repeatable modules

www.cisco.com

• • •

"

- Hosting Services
- ISP Services
- Support/NOC

Functional Design

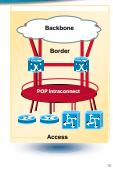
- One Box cannot do everything! (no mater how hard people have tried in the past)
- Each router/switch in a network has a well-defined set of functions.
- The various *boxes* each with a function interact with each other.
- ISP Networks are a <u>systems</u> approach to design.

www.cisco.com

Flat - Meshed Topologies have not scaled. Hierarchy is used in network designs to scale the network.

co.com

Multiple Levels of Redundancy

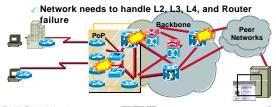

www.cisco.com

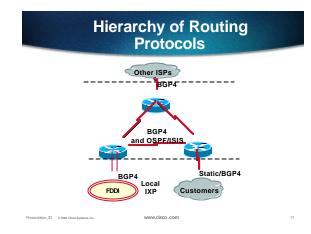
Triple Layered POP Redundancy

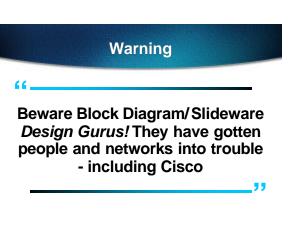
ation ID © 1999. Cisco Systems, Inc.

n ID © 1999, Cisco

- ✓ Lower-level failures are better
- Lower-level failures may trigger higher-level failures
- L2: Two of everything at
- L3: IGP and BGP provide redundancy and load balancing
- L4: TCP re-transmissions recovers during the fail-over

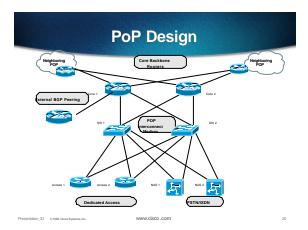


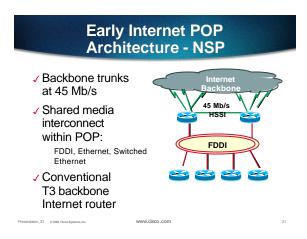

Multiple Levels of Redundancy


Objectives -

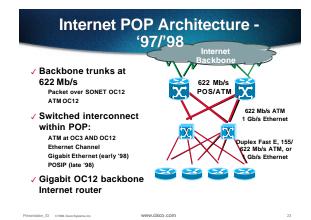
1 ID ©1222.C

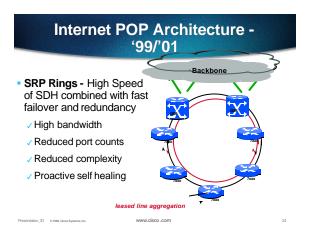
- ✓ As little user visibility of a fault as possible
- ✓ Minimize the impact of any fault in any part of the network.





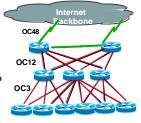
www.cisco.com



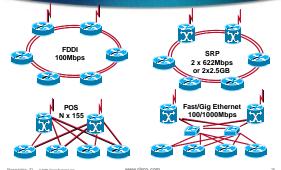


 Advanced OC3 backbone Internet router

Presentation ID © 1999, Cisco Systems, Inc.


www.cisco.com

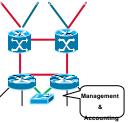
Large POPs - add a 3rd layer


www.cisco.com

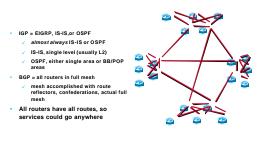
- Problem: port density!
- Solution: buy more routers!
- Customer routers connect to aggregation routers
 Packet over SONET OC3
- ATM OC3

 Aggregation routers connect to backbone routers
- Scales nicely
- ✓ X CRs to Y ARs to Z BRs
- ✓ ...where X>Y>Z ✓ Be careful not to
- oversubscribe!

POP Interconnect Summary

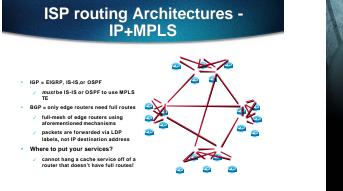

Key Design Principles Interconnection for Management, Security, and Accounting services Netflow Devices Netflow Devices Syslog collector for all network devices

www.cisco.com


- SNMP collector (PC Based UNIX)
- Security Auditing Tools (NetSonar)

Presentation ID © 1999, Ciaco Systems, Inc

tion ID © 1999, Clace 5



ISP routing Architectures - IP

www.cisco.com

on ID © 1999, Ciaco Systems, In

wy cisco com

Services? How many Services?

Most network services are applied at the edge!

www.cisco.com

Edge (one-time) services Per-hop services

- Voice over IP
- MPLS VPNs
- DiffServ, other QoS
 Multicast Services

MPLS packet forwarding

CDNsVPDNs

on ID © 1999, Ciaco Sv

- Managed services
- Dial—DSL—cable

Ask the Right Questions

What is the value of the service?

- Technical merit
- 🗸 Cost savings
- Marchitecture
- What is the cost of the service?
 - ✓ Equipment?

on ID © 192

ion ID © 1999. Cisco Systems, Inc.

- ✓ Training people to support it?
- ✓ Network buildouts/topology changes?

www.cisco.com

Who Knows?

- What will be the impact on existing traffic loads/patterns?
- Can the network deliver the performance that your customers/applications desire? delay? jitter (delay variation)?

www.cisco.com

 Make sure to add capacity as you add services - bandwidth is a must.

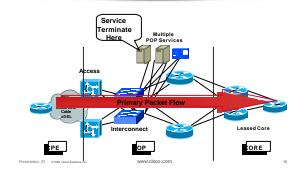
Deployment of New Services

- Is more of a business decision
- The technical aspect is to ensure continued network performance scalability and stability
- Try to keep services within your AS

www.cisco.com

- end2end control
- / less likelihood of failure/flaps

Deploying New Services

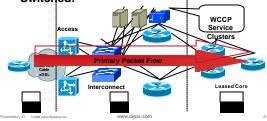

- Don't feed the hype fire
- Look before you leap!
- Don't deploy new technologies and services just for the sake of it; have valid business and technical reasons

www.cisco.com

Deploying New Services

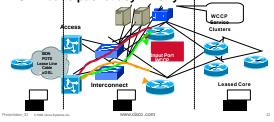
- Usually a Service requires a TCP/UDP termination (I.e. TCP's three way handshake)
- Termination should happen out side of the primary flow path
- Otherwise, the network is then designed around the single service.

Deploying New Services

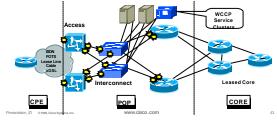

Transparent Redirection of a Flow in the POP Factors that went into the design of WCCP

Design Objectives for the ISP

- Transparent *Redirection* of a IP flow based on source, destination, and/or port number.
- Transparent *Integration* no rebuilding the POP to add this service.
- Failed open if the service fails, it should not effect the core IP service nor any other services.


Design Objectives for the ISP

 Not to effect the primary packet flow of the POP - if not redirected - then is CEF/dCEF Switched!


Design Objectives for the ISP

• Work with the multi-level L2/L3 redundancy of the ISP POP. Equal paths in the IGP + CEF leads packet asymmetry.

Design Objectives for the ISP

• Provide the ISP with Flexibility on the point of redirection. Do not force an architecture on the customer.

Design Objectives for the Service Group

- Linear Scalability with the Cache minimize object replication.
- Fault Tolerance and Maintenance.
- "Joe Smith the Telco Tech" test.

www.cisco.com

ion ID © 1999. Cisco Systems, Inc.

www.cisco.com

Presentation ID © 1999. Ciaco Systems, Inc.