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Abstract

A computational marketis any collection of software agents interacting through a price system. Markets can provide
effective allocation of resources for a variety of distributed environments, and economic analysis is a powerful design tool for
interaction mechanisms. The spread of computational markets puts a premium on market-aware agents, and presents a case
for market awareness on the part of agent developers and AI researchers as well. © 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

By its very name, the workshop on “Modelling
Autonomous Agents in a Multi-Agent World”
(MAAMAW) [2] envisions a universe populated by
numerous (presumably artificial) agents, acting and
interacting autonomously. This interaction produces
behaviors of complexity beyond our means to pre-
dict – hence the need for the modeling effort called
for in MAAMAW’s first “M”. In the years since this
conference was founded, research trends and techno-
logical developments have conspired to render this
multiagent vision a commonplace, to the point of
cliché. Any Internet user even vaguely following the
popular press will naturally anticipate a future where
autonomous agents roam the net, serving our needs,
representing our interests, engaging other agents, and
generally interacting on our behalf.
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The role of AI research is in part to create this
multiagent world, but also to help us understand and
design for it no matter how it emerges. Of course, this
ability to understand and design –engineerability– is
enhanced to the degree that we can define a multiagent
world with some regularity, and identify principles by
which our agents operate and interact. Much of the
research presented at the MAAMAW workshop can
be viewed as efforts to develop such principles, or
to characterize the properties of particular multiagent
worlds.

1.1. Market awareness

The premise of this paper – and of most of our
research over the past several years – is that one par-
ticularly useful model for constructing and analyz-
ing multiagent worlds is that ofmarket price systems.
We argue that autonomous agents should be “market
aware”, not in the sense of following trends in the soft-
ware business, but rather that they should be adept in
interacting with and through market institutions. We
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present below both computational and economic rea-
sons that organizing agent interactions through mar-
kets offers important advantages. However, even if one
is not persuaded by these arguments, one might still
expect markets to be prevalent in multiagent worlds,
simply because the real-world commerce system of-
fers a “default interface” for artificial agents. Market
rules tend to be generic and globally standard, provid-
ing an applicable way to interact for agents who have
not prearranged some other approach. The ubiquity of
market interactions among real-world agents is itself
sufficient basis to predict that market interactions will
be common among artificial agents.

The impetus for market awareness naturally extends
from the agents to their designers, and also to design-
ers of multiagent systems. Construction of engineer-
able multiagent worlds requires that we understand the
implications of alternative configurations, alternative
interaction mechanisms, and alternative agent behav-
iors. To the extent that the agents interact through mar-
kets, our task is essentially one of economic analysis
and design.

1.2. Resource-focused interactions

Without loss of generality, every decision made in a
multiagent system is really aboutresource allocation.
In making this statement, we take a very broad view of
what constitutes a resource. Resources include physi-
cal materials (RAM, wires, airplanes), as well as more
abstract ingredients of activity (time, space, attention,
expertise). The distinguishing characteristic of the re-
sources we consider is that they arelimited. Choosing
to do something entails an allocation of attention and
other activity resources to that thing in lieu of oth-
ers. Conversely, an allocation of resources defines the
activities done and not done. Shared or multiple use
of resources may be possible, but with some limita-
tions in the extent or scope of the sharing. There are
at least two reasons for taking this resource-oriented
perspective:
(1) Much of what agents do can be described by re-

sources involved in their various activities. The
activities themselves are usefully defined by the
resources they require, and the value or resources
they generate. One must choose among two activi-
ties only if they are exclusive, i.e., if there is some
resource (e.g., the actor’s attention) required by

both. In general, the resource-focused description
lends structure to the decision problem by high-
lighting tradeoffsamong alternate activities.

(2) A large share of significant multiagent interac-
tions can be characterized in terms of resources
transferred across the agents. Describing them in
this way provides structure to the problem by sim-
plifying the interfaces between agents.

One simple form of interaction – anexchange–
is defined directly by specifying the resources trans-
ferred from each agent to the other. Other seemingly
different forms of interaction, such as one agent per-
forming a task for another, can be described as an ex-
change where accomplishment of the task is a resource
generated by the first agent and transferred to the sec-
ond. Even when the interaction does not involve an
exchange, the salient point of connection often centers
on a resource of mutual interest. For example, physi-
cal agents colliding is an instance of contention for a
particular instance of space resource.

Once we have a characterization of agent activity
and multiagent interactions in terms of resources, then
specifying the configuration of resources devoted by
the various agents to their respective activities (over
time, in a dynamic system) determines the outcomes
of the activities, and effectively summarizes the state
of the overall system.

Activities can be usefully divided into two cate-
gories. Agentsconsumesome resources, acquiring di-
rect value from the resources consumed. Agents use
other resources toproducenew resources which they
exchange for mutual advantage with other agents. The
two types of activities define two conceptually dis-
tinct sectors of a multiagent system, as diagrammed
in Fig. 1. Basic resources (e.g., agent effort and any
raw materials initially held by the agents) flow from
the consumption sector into the production sector. Pro-
ductive activities transform the resources (perhaps in
several stages) into finished goods, which can be di-
rectly enjoyed through employment in consumption
activities.

A configuration specifying what resources are
devoted to what activities is called anallocation.
Determining a resource allocation can be viewed as
the problem to be solved by the multiagent system.
The two-sector perspective lends further structure to
the problem by separating (1) what resources initially
exist and what results are valued (defined by the



M.P. Wellman, P.R. Wurman / Robotics and Autonomous Systems 24 (1998) 115–125 117

Fig. 1. Flow of resources in a multiagent system.

consumption sector), from (2) what can be done to
produce results with resources (the production sector).

1.3. Mechanisms

The method by which an allocation is determined
for a multiagent system is what we call amultiagent
interaction protocol, or more simply, amechanism[5].
A mechanism describes a communication protocol, in
effect defining who can communicate with whom and
what message types are allowed. The study of allo-
cation mechanisms and their properties is known in
economics asmechanism design[10,19].

Unmediatedmechanisms involve bilateral, or mul-
tilateral, communication among all of the agents in-
volved. Such mechanisms may not scale well to large
numbers of agents. Inmediatedmechanisms, on the
other hand, agents submit messages to some institu-
tion implementing the mechanism (or a part thereof).
The process may be iterative, with the mechanism
institution providing some feedback based on previ-
ous messages received. The process terminates under
conditions prescribed by the mechanism rules, which
then dictate the resulting allocation as a function of
the pattern of messages.

Another conceptual benefit of the resource-
allocation model is that it parametrizes the interface
of agents to the rest of the system. The agents’ behav-
ior is divided into two realms. First, they participate
in the resource-allocation mechanism to determine
their available resources. Second, they apply these
resources as they see fit. If the division is complete
(i.e., the resources fully account for the multiagent

interaction) then we have broken off a significant part
of the problem – individual agents applying resources
– that does not require interaction. To justify this sep-
arability, it must be the case that once we specify the
allocation, what the agents do with their resources do
not affect the others. In economic terminology, this
is is to say that there are noexternalities. Much of
mechanism design is devoted to alleviating problems
caused by externalities.

The task of a mechanism is to determine an allo-
cation resulting from agent message-passing strate-
gies. In designing a mechanism to solve allocation
problems, we consider desirable properties for out-
come allocations, as well as computational issues
in determining allocations from agent interaction
protocols.

A variety of desiderata for allocations may be con-
sidered. The most standard of these isPareto Optimal-
ity (or Efficiency). An allocation is Pareto Optimal if
and only if there does not exist another feasible alloca-
tion that is strictly preferred by one agent, and at least
as preferred by all the rest. As designers of multiagent
systems this is clearly the least we would want, as any
inefficient allocation is dominated by another, in ef-
fect wasting resources. It is also the most we could
require without introducing some judgment about the
relative importance of satisfying various agents.

1.3.1. The sequel
In the remainder of this paper, we discuss some fea-

tures of a particular class of resource-allocation mech-
anisms – that of market price systems. In Section 2 we
motivate the introduction of markets by enumerating
some benefits of structuring mechanisms according to
a price system. We outline some of the design choices
relevant to market systems in Section 3, and introduce
some issues bearing on these choices. Our conclusion
follows a few words on the design of market-aware
agents.

2. Market price systems

There are a variety of mechanisms for solving
resource-allocation problems, including such well-
known examples as first-come-first-served and allo-
cation by fiat. The defining feature of amarket-based
mechanism is that the allocation is mediated through
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a price system. In a market price system, we identify
each distinct resource type with agood, and asso-
ciate each good with a numeric specification of its
exchange terms – the price. The basic rule of a price
system is that goods may be exchanged according to
the relative prices of the goods involved. For example
if good j is assigned pricepj , then one unit of good
3 may be exchanged forp3/p7 units of good 7.

Thus, a price system imposes a constraint on the
process for getting from one allocation to another. An
allocation isreachablewith respect to an initial al-
location and a price system only if it is possible to
reach the allocation from the initial through a series
of exchanges at ratios determined by the given prices.
Although the price system is restrictive (at least in the
sense of narrowing the set of reachable allocations),
basing a mechanism on prices has numerous advan-
tages [12]. Here we mention several, without doing
complete justice to all the underlying subtleties.

2.1. Prices define a common scale of resource value

Rather than consider all combinations of good
exchanges, agents and mechanism institutions can
simply relate each good to the common scale. This
reduces the specification of values to a number of pa-
rameters linear in the number of goods, rather than in
the size of the exchange space (which is exponential
in the number of goods). The basic idea is that prices
representmarginal values, which are often sufficient
for evaluating incremental decisions.

2.2. Prices facilitate multilateral exchange via
bilateral exchange

The common scale of values defined by a price sys-
tem enables introduction ofcurrency, tokens denom-
inated in price units. This in turn enables complex
transfers of multiple goods among multiple agents,
without requiring multilateral communication or serial
good transfers. That is, any multilateral exchange can
be implemented as a set of bilateral exchanges, each
of currency for a good, each from the original good’s
owner to its final owner. Such bilateral exchanges are
generally much easier to arrange than would the ef-
fective multilateral transfer. Moreover, since most net-
work environments support bilateral communication

as a primitive, this property significantly enhances
computational viability.

2.3. Prices summarize relevant information

An agent’s appropriate behavior in a multiagent sys-
tem depends in general on all other agents’ preferences
and capabilities, as all this may influence the rela-
tive values of resources. It is organizationally unreal-
istic to assume that agents know all this information
about their counterparts (presumably one reason the
system is decentralized), and computationally unreal-
istic even to ask them to contemplate the possibili-
ties. Prices concisely represent the summary impact of
other agents on good valuations, providing a compact
specification of the agent’s local decision problem.2 If
the agent’s own influence on marginal valuation is neg-
ligible (i.e., the agent’s action does not affect prices),
then local behavior based on the summary information
can support optimal (i.e., Pareto efficient) decentral-
ization. Under similar conditions, an agent can deter-
mine the advisability of undertaking a newly available
productive activity by evaluating its profitability with
respect to given prices [22]. Ygge and Akkermans [30]
present a concrete model that illustrates how a price
system can effectively decentralize a distributed con-
trol problem.

2.4. Prices structure the mechanism protocol

Narrowing the objective to determining a price
significantly focuses the mechanism design space
(Section 3.3), and facilitates analysis and comparison
of candidate mechanisms.

3. Market design space

Once we determine that a particular resource-
allocation problem is amenable to market mecha-
nisms, we still face many decisions regarding how

2 This assertion can be rendered precise and demonstrated in
particular settings. Specifically, Mount and Reiter [17] have
shown that the competitive protocol (i.e., behaving according
to given prices) minimizes the dimensionality of the message
space required to determine an efficient allocation for convex
problems. Jordan [11] has further shown that this protocol is
uniquely minimal.
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to configure the market. In this section, we describe
some of the options open to the designer of computa-
tional markets. The space of possible markets –mar-
ketspace– can be characterized as the composition of
two design spaces:

marketspace= good space× mechanism space.

Good spacecomprises the ways in which we could
specify the resources to be allocated in the system. The
set of ways in which we might determine an allocation
of those resources constitutesmechanism space. In the
context of markets, we limit our attention to mech-
anisms based on prices. We consider both of these
subspaces below, following a discussion of the overall
goals of market design.

3.1. Design goals

Economists and game theorists have introduced a
rich set of concepts useful for evaluating the proper-
ties of alternate allocation schemes. We present some
of the more important ones below. A more detailed ex-
planation of some of these can be found in Campbell’s
monograph on resource allocation [5, Chapter 2].
Rosenschein and Zlotkin [20, Chapter 2] discuss a
similar set of desiderata in the context of multiagent
systems. Note that these criteria apply to all resource
allocation mechanisms, not just market systems.
• Privacy preservation.Informally, a mechanism pre-

serves privacy if it does not require that individu-
als account for each others’ private information in
their own behavior. Privacy in general refers to the
degree that information known specifically to indi-
vidual agents is not revealed to the others. All else
being equal, privacy reduces the ability of agents
to gain strategic advantage by reasoning about or
manipulating the beliefs of others.

• Individual rationality.A mechanism is individually
rational if no agent would prefer not to participate in
the mechanism at all (e.g., to take its initial situation
as the result). The set of allocations such that no
proper subset of agents can improve their lot by not
participating is called thecore.

• Efficiency.As mentioned above, Pareto efficiency is
a natural criterion for evaluating the outcomes of
resource allocation mechanisms.

• Feasibility. Even more primary than quality of the
outcome is whether the allocation is feasible. An
allocation is feasible if the resources assigned to ac-
tivities are actually available, either as part of what
initially exists or as a product of some productive ac-
tivity assigned by the allocation. Feasibility may be
difficult to ensure when mechanisms are distributed
according to the resource. For example, if an agent’s
ability to produceX is contingent on its acquisi-
tion of Y , its negotiations for these resources are
inherently coupled. Mechanisms that manage sepa-
rate negotiations must provide some policy to cover
unachievable commitments.

• Incentive compatibility.A mechanism is incentive
compatible if an agent can do no better than by act-
ing truthfully. This is a desirable feature because
it allows the agent to consider only its own state,
thereby simplifying its task. That is, incentive com-
patibility eliminates any advantage in speculating
about other agents’ strategies, and hence reduces the
cognitive burden (information gathering and pro-
cessing costs) for each agent. Moreover, if a me-
diator can extract all private information held by
the agents through such a mechanism, it can deter-
mine an optimal allocation with respect to its other
criteria.

• Convergence and equilibrium.Many mechanisms
take an iterative form, on each iteration accepting
messages from the agents and announcing a ten-
tative allocation. Such a mechanismconvergesif
it approaches a particular allocation over time. If
an allocation is self-enforcing, in the sense that
each agent would choose its part of the allocation
given the information reported by the mechanism,
we say that it is anequilibrium. For example, a
competitive equilibriumis an equilibrium allocation
in which each agent gets its optimal choice,given
resource prices reported by the mechanism. Un-
der certain conditions, competitive equilibria can be
shown to exist [13], along with convergent mecha-
nisms. Under fairly general circumstances, any such
equilibrium must be Pareto efficient.

3.2. Good space

Selecting the commodities which will be traded
is often the most difficult part of the design pro-
cess. Sometimes a resource-allocation problem has an
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obvious breakdown into commodities. Other times,
there are many ways to slice the resources into com-
modities, with no clearly superior treatment. In our
experience developing a variety of computational
market systems, we have found that decisions about
good space typically drive an extensive chain of
related design decisions [27].

3.2.1. Time and uncertainty
One very common set of issues arises when goods

have temporal extent, such as systems that schedule
time in a factory [1], or on a CPU. In such cases, the
time that a resource is available is a defining attribute.
Today’s newspaper is different than next week’s,
and today’s newspaper available today is different
than today’s available next week. Of course, next
week’s newspaper available today would be the most
useful of all! To represent this variety, strictly speak-
ing, we would need separate goods for each combi-
nation (t1, t2) of the newspaper datedt1 available at
t2. Restricting attention tot16 t2 eliminates only half
the cases. A reasonable approximation might be to
treat all instancest1 < t2 identically as “old news”,
thus reducing the required goods to a number linear
in the time periods. A more extreme simplification,
commonly used, would be to consider only a single
time period (i.e.,now, usually implicit), and address
allocation of future resources when their times come.
Intermediate approaches, perhaps the most common,
may consider some particularly important future re-
sources, neglecting the rest.

In the FreeWalk computational economy [29], for
example, agents are endowed with raw network re-
sources (bandwidth) every time period, and negoti-
ate for multimedia service (measured in quality units,
QoS) over time. Depending on the agent’s current and
anticipated needs, as well as current and anticipated
prices, it may choose to make intertemporal tradeoffs
between services used at various points in time. How-
ever, rather than maintain markets in QoS for each
time period, we make only a binary distinction, be-
tween current and future. In each time slice, we run
the two-period model to near equilibrium, allocate ser-
vice according to the “current” allocations, and roll
the horizon forward by using the “future” allocations
to set the initial conditions for the next round.3 Al-

3 It is not necessary to reach strict general equilibrium each

though this approximate model presumably leads to
less efficient outcomes than would the full set of tem-
poral markets, having even one available futures mar-
ket enables some of the most beneficial intertemporal
exchanges to be effected. Thus, expanding from one
period to two can provide a large share of the potential
improvement of the full temporal model, at a small
fraction of the computational cost.

Another common issue isuncertainty, where agents
must make decisions about deploying resources with-
out full knowledge of the outcomes of their activities.
In some cases, agents may be able to improve overall
welfare by exchanging resourcescontingenton res-
olution of some uncertain events. Whereas it would
usually be inconceivable to introduce goods corre-
sponding to every resource in every state of nature,
it generally suffices to introducesecurities– one for
each state – paying off in some designated resource
unit if the state obtains [13]. Of course, this too may
require too many goods, and so we will often prefer to
cover only a selected set of important contingencies.

The idea that markets in uncertain propositions can
be used to coordinate decentralized behavior under
uncertainty was first proposed in the context of mul-
tiagent systems by Hanson [8]. In our own work, we
have shown how securities markets can serve to ag-
gregate the beliefs of multiple agents with possibly
divergent information sources [18]. However, to date
there has been relatively little investigation of the po-
tential of contingent goods for more general problems
of resource allocation under uncertainty in multiagent
systems.

3.2.2. Example: good space for a factory scheduling
problem

To illustrate the subtlety of good specification de-
cisions, let us consider a (much simplified) factory
scheduling problem in some more detail. Imagine a
factory that can make several different products, for
instance, one that makes different colored bucket seats
for cars. This factory may supply seats to several dif-
ferent automobile companies. These companies need
the seats at specific times in order to install them dur-
ing automobile assembly. Depending upon the model
they are building, they need different numbers of seats:

period to ensure feasibility, as only the current period is actually
deployed in productive and consumptive activities.
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two for a sports car, four for a passenger car, and
six for a minivan. The automobile company needs the
complete set, on time, to produce the car.

A default method for solving this problem would
have the companies place orders for all of the seats
they need, and let the factory choose which to serve
first. Any renegotiation would be handled bilaterally
and via unrestricted protocols. If we instead wish to
cast this in market-oriented terms, our task is to design
the market structure. There are at least two very differ-
ent ways to formulate the good space for this problem.

One formulation adopts seat bundles as the primary
good. If a company wants to build a red minivan, it
will offer to buy a bundle of six red seats from the
factory. Since red seats delivered at 5:00 today are not
interchangeable with blue seats or red seats delivered
tomorrow, we would have to have one market in every
combination of seat color and delivery time.

A second approach would treat factory time as the
primary good. Automobile companies would buy time
at the factory (perhaps in units of time sufficient to
produce a car seat), and decide for themselves which
color seats to produce.

An advantage of the second approach is that the fac-
tory need not make decisions about what color seats
to make. A disadvantage is that the automobile com-
panies would need to know what factory resources go
into making a seat. In general, design decisions about
good space have implications for information burdens
on participating agents, and on what scope of markets
they need to consider. In a general market for factory
time, the factories can potentially provide their ser-
vice for a variety of purposes by consulting a single
market. In a general market for car seats, the automo-
bile companies can potentially obtain seats produced
by a variety of methods (e.g., different factory types)
without needing to shop across factory markets.

In this example there is no clear basis for deciding
which formulation is superior. Actually, we do not
necessarily have to make a choice – we can create
markets of both types and let agents translate between
them.4 But whether we decide on either or both, the

4 We call agents that implement identity relationsarbitrageurs,
and find them generally useful for smoothing the operation
of computational markets [27], e.g. by mapping combinations
of goods directly produced to notional goods directly con-
sumed [26].

choice of good formulation may have a significant
influence on the possible mechanisms for determining
the price and allocation of these resources.

3.3. Mechanism space

Without much loss of generality, we identify the
problem of designing a mechanism for determining
prices with that of designing anauction. The general
definition of an auction (see [14]) is quite general in-
deed. It essentially includes any well-defined medi-
ated protocol that determines prices as a function of
messages submitted by participating agents.

As a type of protocol, an auction is defined in terms
of the messages that comprise it. In their full general-
ity, it is not possible to define required elements of an
auction protocol. Nevertheless, most actual and pro-
posed auctions include at least the following compo-
nent message types.
• Bids typically represent an agent’s willingness to

engage in some exchange or set of exchanges. For
example, a bid might specify a demand function,
indicating the agents’ desired quantity of a resource
as a function of price.

• Price quotesconvey to agents information about the
state of an auction in the interim before final price
determination and allocation.

• Notificationsinform agents of the results of an auc-
tion, i.e., a price-based allocation. Typically, the
auction reports to agents the terms of contracts they
have agreed to.
A full specification of the variations on these mes-

sage types and other protocol parameters is beyond
the scope of this paper. We are exploring this space
systematically with our configurable auction server,
the Michigan Internet AuctionBot [28].5 In the fol-
lowing, we provide a brief elaboration of some issues
in auction design, organized around the three primary
message types.

3.3.1. Bids
Bids represent the agent’s willingness to exchange,

typically specifying quantity demanded of a good as
a function of its price. For single-unit goods, this
amounts to specifying a threshold price. An auction

5 http://auction.eecs.umich.edu/
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might impose any of a variety of restrictions on the
scope of bids, for example that they include a limited
number of price-quantity pairs, that they be in discrete
units, or that they have some regular form. In addi-
tion, the auction may restrict changes in bids, such as
disallowing withdrawals or decreases in offer prices.
Or, it may limit which agents are allowed to place buy
or sell bids in the auction. As long as the rules are
explicit and computable as a function of the joint bid
state, the auction can enforce them simply by rejecting
bids that violate the constraints.

3.3.2. Price quotes
Price quotes are the means by which the auction

disseminates information about the state of the mar-
ket. We call them “price quotes” because they often
take the form of hypothetical prices at which agents
would or could exchange if the allocation were to be
determined from the current state. To compute quotes
interpretable in this way, the auction can usually just
execute its allocation-determining, orclearing, algo-
rithm in a hypothetical mode. The quote may answer
such questions as “what would the price be if the auc-
tion cleared now?”, or “what would I have to offer to
obtain a unit of the good, given the state of the other
agents’ bids?” The answer to this latter question is
generally called anask quote. A bid quoterepresents
the price at which one would have to offer to sell in
order to transact in the current state. The terminology
comes from the “bid/ask spread” commonly used to
describe the state of bidding for commodities in orga-
nized exchanges.

A chronology of price quotes represents an histori-
cal description of the state of an auction at a series of
particular times. Auctions may report other historical
information, such as the terms of actual previous trans-
actions (assuming that the auction can be associated
with a resourcetypewith some meaningful history).
By reporting such an information, auctions reduce the
information inequality that would otherwise exist be-
tween agents participating in previous transactions and
everyone else.

Exactly what interim information is revealed and
when, can have a significant effect on agents’ bidding
strategies and the overall effects of auctions. Theore-
tical analysis of auctions [14,16] is always based on
explicit assumptions about price quotes. For example,

sealed-bidauctions are defined as those that eschew
price quotes altogether.

Sometimes, limiting or even eliminating informa-
tion revealed through price quotes can be a beneficial
policy. If information about one’s bid will be revealed
– even indirectly – through price quotes, then one must
consider the potential negative consequences of this
revelation in constructing a bid. Similarly, one should
also take into account whatever the price quote re-
vealed about the other agents. Both considerations add
to the cognitive burden on individual agents, and may
lead to inefficient outcomes attributable to the agents’
strategic behavior.

On the other hand, if multiple interdependent re-
sources are auctioned at once, an agent’s value for one
good depends substantially on the prices at which it
could buy or sell others. In that case, a price quote is
essential for effective coordination of the agent’s ex-
changes. For example, in the tatonnement and related
protocols [6,13], agents adjust their bids for all goods
based on changes in prices for all goods. Indeed, meth-
ods for reaching general equilibrium invariably rely
on such iterative price adjustment processes.

One of the most difficult issues for auction design-
ers is how to encourage agents to participate in the
mechanism during this iterative search phase – thus
making the search meaningful – despite their disin-
centive to reveal information about themselves. One
useful approach is to imposeactivity rules, usually in
the form of conditions for auction participation based
on level of bidding activity. For example, in the FCC
spectrum auctions, an agent was dropped out of the it-
erative bidding process whenever it failed to maintain
some number of high bids among the recent bidding
history [15].

3.3.3. Notifications
Notifications per se are not very interesting; they

merely report the result of the auction process. What is
salient, of course, is how the allocation is determined
itself.

The allocation determination event is called aclear,
as in clearing a market. The auction clears accord-
ing to a preset schedule, which may specify particu-
lar times or bidding events that would trigger a clear.
At one extreme – the continuous auction – every bid
could trigger a potential clear, depending on whether
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it matches an existing bid. At another – the one-shot
auction – there is only a single clear, typically at a
fixed designated time.

The auction’s clearing algorithm matches buyers
and sellers and establishes a price at which they are
willing to transact. When goods are divisible and
bids take the form of continuous decreasing demand
functions, a natural clearing algorithm (that of the
Walrasianauction) would calculate the exact price at
which buyer and seller demands balance. For indivis-
ible goods, or other circumstances with discontinuous
demands, such perfect clearing prices do not neces-
sarily exist.

Uniform pricingalgorithms establish a single price
at which every transaction formed during that clear
will execute. Examples of uniform pricing policies in-
clude theMth and(M + 1)st pricing rules, whereM
refers to the number of units offered for sale. Un-
der these policies, the clearing price is theMth (or
(M + 1)st) highest of all bids submitted – counting
each unit, both buy and sell. WhenM = 1, these
prices reduce to the well-known first- and second-price
auctions (with reservation prices). As Vickrey [24]
demonstrated in his seminal work on auction analy-
sis, the second-price sealed-bid auction is incentive
compatible with respect to bids to buy. The(M +1)st-
price sealed-bid auction is similarly incentive compat-
ible for buyers, and theMth-price auction for sellers.
It can be shown that no uniform-price auction can be
simultaneously incentive compatible for both buyers
and sellers.

Incentive compatibility might be one reason to
adopt some form ofdiscriminatorypricing, in which
different agents may pay or receive different prices
for the same good. Another (more fundamental) rea-
son may be the potential nonexistence of an exact
uniform price, as mentioned above. In some cases,
discriminatory schemes may support more efficient
overall results. However, they may also be difficult to
enforce, and the perception of unfairness might also
impede their acceptance unless due care is taken in
design.

4. Agent design

Strictly speaking, agents are not part of mar-
ketspace, as designers of the market structure typically

cannot control the participating agents.6 Indeed,
many of the design criteria enumerated in Section 3.1
specifically address this element of reality.

As market mechanisms become more prevalent
(for reasons adduced above and otherwise), design
of agents specializing in market interactions will
become an important category of agent research. Ar-
tificial intelligence and economics both have much to
say about the principles of agent design [3], and we
expect that design principles specific to market mech-
anisms will build on these foundations. Although we
make no attempt to survey existing work bearing on
this topic, at least one current research topic seems
worthy of mention.

One way to classify agents in a multiagent system
is with respect to the degree and depth to which agents
attempt to reason about each other. Vidal and Durfee’s
concept of ak-level agent [25] can be described in-
ductively, roughly as follows:
• A 0-level agent does not reason directly about

others.
• A 1-level agent forms models of other agents as 0-

level agents.
• A k-level agent forms models of other agents as

(k − 1)-level agents.
Game-theoretic agents, in contrast, would typically
be regarded as∞-level, assuming common know-
ledge of the game and common knowledge of mutual
rationality.

We find it useful to distinguish further among
0-level agents acting within a price system, classi-
fying them ascompetitiveor strategic, according to
whether they take into account their own effects on
prices. (An agent 1-level or above is strategic by
definition.) This automatically induces distinctions at
higher levels, based on what type of 0-level agent the
hierarchy is founded on. We might also distinguish
variant forms ofk-level agents, according to whether
they reason about other agents individually or in the
aggregate.

In one recent investigation [9], we compared agents
of different types acting within a simple market
game. Specifically, the experiments included 0-level

6 Cases where agents are under the control or partial control
of the designers may call for very different approaches [4]. In
such situations, theagencyof the modules is more ambiguous,
as their autonomy is somewhat compromised.
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(competitive) agents, along with 1-level agents that
formed an aggregate model of the others as com-
petitive. We found that although the higher-level
agents converged to “correct” models (i.e., the sys-
tem reached an expectations equilibrium), they were
still likely to be worse off than had they behaved as
simple competitors. The reason is that the strategic
agents may have had no way to verify their con-
jectures about actions not taken, and so they often
missed favorable opportunities. In a related model,
Sandholm and Ygge [21] also found that competitive
agents could outperform their strategic counterparts
under uncertain conditions, as the more sophisticated
policies were more sensitive to errors in models
formed.

Clearly, these types of experiments merely scratch
the surface. We cannot realistically expect to obtain
general results about the superiority of some broad
class of strategic policies, as so much depends on the
particulars. Indeed, within any particular “level” class,
there are so many ways to realize reasonable bidding
behaviors that we clearly need some further explo-
ration and structuring of this space. Sierra et al. [23]
specify a variety of bilateral negotiation strategies, and
present theoretical and empirical evidence bearing on
their convergence and performance.

5. Conclusion

The argument for market awareness elaborated here
has two keystones:
(1) Agents interact largely through resources, and thus

resource-allocation covers a significant part of our
problem as designers of multiagent systems.

(2) Price systems provide structure to the alloca-
tion problem, and offer numerous advantages
for decentralizing decisions across autonomous
agents.

In exploring the rationale and implications for the
market-based approach, we have identified many is-
sues bearing on the design of computational markets.
If we have convinced the reader that (1) the eco-
nomic approach brings with it useful concepts for
understanding and evaluating alternative designs, and
(2) intellectually challenging and practically important
problems remain for researchers in this area, then we
have achieved our goal.
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