GLIDER DESIGN PROJECT

The Task

- To design, build and test a scale-model glider
- Designs will be judged on four criteria:
 - -Distance travelled, D
 - -Time of flight, T
 - The product $D \times T$
 - The quantity $D \times T \div M$ where *M* is the glider mass

Design Requirements

The glider must:

- Have a wing span of no more than 60 cm
- Be no more than 50 cm long

Materials

- Thick foam board -2 sheets $\sim 33 \times 8$ cm
- Thin foam board -2 sheets $\sim 31 \times 19.5$ cm
- A4 paper 4 sheets
- Drinking straws 8
- Tissue paper 1 sheet
- Masking tape
- Adhesive

Equipment

- Scissors
- Stanley knife
- Steel ruler
- Sand paper
- Radius aids
- Bluetack (for centre of gravity adjustment)

Objectives

To give a taste of what Engineering is all about:

- Problem solving
- Being creative an Engineer is by definition an *ingenious* person
- Team work
- Rewarding
- Fun

Project Timetable

Introduction to Design Task10 minutesIntroduction to Glider Design20 minutesDesign Session15 minutesConstruction/Test Session60 minutesFinal Test Session15 minutes

An Introduction to Glider Design Geoff Parks

Glider Parts

Glider Control Surfaces

Forces on a Glider

Weight

• The weight of a glider is simply its mass multiplied by *g*, the acceleration due to gravity

$$W = Mg$$

Lift I

- The **Coanda Effect**: a fluid has a natural tendency to follow the shape of a body as it flows past it
- If the body is correctly shaped (airfoil shaped), this can be used to generate lift

Lift II

Fluid is deflected downwards by airfoil

- .:. Force acts downwards on fluid
- ∴ Force acts upwards on airfoil (by Newton's 3rd Law)

Lift III

The amount of lift depends on:

- Wing size $\text{larger area} \rightarrow \text{more lift}$
- Speed higher speed \rightarrow more lift
- Airfoil shape more flow turning → more lift
- Airfoil angle of attack larger angle of attack → more lift

Stall

- If the airfoil angle of attack (a) becomes too large and/or the flow speed becomes too large...
- The Coanda effect can break down, leading to flow separation
- This separation, known as **stall**, reduces lift

Drag I

There are two forms of drag:

- Form Drag
- Induced Drag

Form Drag depends on:

- The size of the object larger projected area → more drag
- Speed higher speed \rightarrow more drag

Drag II

Induced Drag, ID, depends on:

- The amount of lift, *L*
- Wing aspect ratio, AR

 $ID \propto L^2 \div AR$

Typical Glider Profile

Lines of Action

• To maximise flight distance, the lines of action of the lift and weight must coincide

Design Tips I

- Tape pieces of thin board onto the glider to act as ailerons, elevator and rudder; you can then slightly bend these to help trim your glider and direct it in flight.
- Add *dihedral* to the wing tips by making the outer portions of the wing angle upwards.

Design Tips II

- Make the wings moveable so you can slide them fore and aft along the fuselage to find their optimal position.
- Round the leading edges of all surfaces and "point" the trailing edges.