
Soundmodem on modern Operating Systems

Thomas Sailer, HB9JNX/AE4WA

August 1, 2000

Abstract

Five years ago I presented drivers for using standard PC’s with soundcards as packet radio modems
[13]. The mainstream CPUs of that era were not quite powerful enough for complex signal processing,
so the design at that time had to trade robustness for computational simplicity. Futhermore, operating
system preferences have changed since. It is therefore time to rethink the design. In this article, an up to
date implementation of an amateur soundcard packet radio driver is presented that features a common
source base supporting all major operating systems, and the most common modulation formats.

1 Introduction

Five years ago I presented drivers for using standard PC’s with soundcards as packet radio modems [13].
Later, I also presented Linux drivers [11] and a VxD driver for Windows95 [12]. At that time, my devel-
opment PC was a 66 MHz 80486, and PCI was just born. To keep CPU utilization at an acceptable level in
spite of CPU’s with slow multiplication, design decisions trading robustness for computational simplicity
had to be taken. Today, processors below 500 MHz are getting hard to obtain, and today’s CPU’s contain
fast multipliers, floating point execution units and multimedia instructions

Operating system preferences have also changed. DOS and early Windows versions either did not have
soundcard support at all or their support had too much latency to be usable. Today, all common operating
systems support low latency soundcard drivers.

The outline of the paper is as follows. In section 2, the architecture of the 1995 drivers is presented
together with its problems. Section 3 briefly presents the architecture of the new driver. Section 4 describes
installation and usage of the new driver, and Section 5 discusses how faster transmission could be achieved
using unmodified handheld transceivers. Section 6 concludes the article.

2 The 1995 Architecture and its problems

2.1 Audio Input/Output

Five years ago, DOS was a widely used operating system for packet radio. DOS did not have any driver
support for soundcards, so the packet radio driver had to implement its own soundcard driver. On the other



3 THE NEW SOUNDCARD MODEM DRIVER ARCHITECTURE

hand, there were only two standard register level soundcard interfaces, namely the ISA SoundBlaster and
the WSS (Windows Sound System) register interface. Virtually all soundcards on the market supported
either or both of these pseudo standards.

Windows did have sound driver support relatively early, but the original support had long intolerable
latencies for packet radio applications. Low latency sound input/output was later added mainly to support
games under the name “DirectSound”.

Today, PCI has largely displaced the ISA bus, and with it the old register interfaces, since they were
tied to the ISA DMA architecture. On the other hand, the importance of DOS faded and all major operating
systems feature low latency soundcard drivers.

2.2 Modems

Because of the limited CPU power available five years ago, the modems had to trade performance for
computational simplicity. For example, the 9600 Baud FSK modem lacked a receiver filter, resulting in
performance degradations from barely noticeable to devastating depending on the receiver used.

Also, the modem code was designed to operate only at a specific bit rate and at a specific sampling
rate, limiting the choice of soundcards that could be used.

Because the modem driver included its own soundcard driver, it had to be running in kernel mode. In
kernel mode, it is difficult or impossible to use floating point and multimedia instruction sets. The huge
differences of the kernel mode environment forced vastly different code bases for the supported operating
systems.

3 The new Soundcard Modem Driver Architecture

One important goal of the new soundcard modem driver is supporting all the major operating systems with
constrained developer resources. To achieve this, a common source tree for all platforms is employed. Of
course certain tasks still require platform specific code, namely the sound driver abstraction (sound driver
interfaces vary widely even among UNIX operating systems), and the packet input/output code. The GNU
C Compiler [3] was used because it is the defacto standard compiler on many UNIX-like systems, is
freely available and can also target 32-bit Windows [9]. The Windows threading primitives differ from
the standard POSIX ones used under UNIX and Linux. A small library has been used that implements
the standard POSIX threading primitives on top of the proprietary Windows ones [6]. To enable portable
GUI applications, the GTK [1] widget library has been used, because it is one of the two defacto standard
libraries under Linux and UNIX, and GUI builder tool [2] and a port to Win32 [7] exists.

Perhaps the most user visible new feature is the fact that the modems are now fully parameterizable.
I have been often asked to support higher FSK bitrates and the many 2400 baud AFSK modes. All these
modes are now supported. To make this possible, the modems must now support arbitrary sampling rates.
Of course there is a lower limit to satisfy Nyquist, therefore each modem declares its minimal sampling
rate depending on the user chosen parameters, and the driver selects the largest and rounds it to the next



rate supported by the soundcard. Once the actual sampling rate of the hardware is known, the modems
compute the filter coefficients needed.

Since the modems now support arbitrary sampling rates, it is easy to run multiple modems in parallel.
This way multimode access channels such as combined 1k2 AFSK/9k6 FSK can be supported easily. Of
course, the transmitters have to be serialized.

In order to simplify the modem code itself, each receiver runs in its own thread. The main interface
to the soundcard is the routine audioread. The modem specifies the number of samples requested
and the time with a 16 bit integer with wrap around. Note that audioread does not return if the user
requests the driver to stop, and blocks until the requested samples arrive. My modems usually represent
the time internally as a 16.16 fixed point fraction of the sample index, and use polyphase FIR filters to
interpolate between samples. As the transmitters are serialized anyway, they share a single thread. Again,
audiowrite blocks until the specified samples are written. Unlike the read case, the write case does not
take a time parameter, the samples are assumed to follow the previous ones without gap.

pktget and pktput request/deliver HDLC encoded bitstreams from/to the HDLC encoder/packet
input/output.

With these brief explanations and the help of the existing AFSK and FSK drivers, it should be possible
to understand the modem code and to add additional modems to the framework.

4 Installation and Usage

In this section, the installation is described. Source code and precompiled binaries can be downloaded
from [10].

4.1 Windows

Under Windows, FlexNet/32 is used as the software AX.25 stack. FlexNet/32 is freeware for amateur radio
use and can be downloaded from [4]. FlexNet/32 supports advanced features, like hop to hop acknowledge
and Van Jacobson header compression for TCP/IP. A user friendly terminal program named Paxon and
supporting FlexNet’s application programming interface is available as well [5]. Figure 1 shows Paxon
and FlexNet’s channel configuration dialog. Another terminal program supporting the FlexNet API is
WPP [14]. It features an user interface similar to well known DOS terminal programs.

Installing FlexNet/32 is easy; unpacking the archive and starting Flexctl.exe is all that is needed.
Installing the Soundcard Modem driver is simple as well; its archive simply needs to be unpacked into the
same directory as FlexNet/32, the new driver gets recognized automatically.

4.2 Linux

Under Linux, there are several options, namely installing the binary RPM which was compiled on RedHat
6.2/i386, or compiling from the source RPM or the source Tarball.



4 INSTALLATION AND USAGE

Figure 1: FlexNet/Paxon



4.3 UNIX

After configuration with the soundmodemconfig tool (see below), the modem can be started by
running soundmodem as root. The driver interfaces to the Kernel mkiss driver. The result is that the
user sees a standard kernel AX.25 network interface that can be used with the kernel AX.25 stack, even
though the driver completely runs in userspace. soundmodem also sets up the interface callsign and IP
addresses.

4.3 UNIX

Under UNIX, there is no kernel AX.25 support, so a usermode AX.25 stack such as xNOS or WAMPES
must be used. soundmodem exports a KISS stream on a pseudo terminal pair (pty/tty), to which xNOS
or WAMPES can attach.

4.4 Configuring the Driver

A graphical application named soundmodemconfig makes configuring the driver easy. The tool sup-
ports multiple configurations one of which can then be selected at driver runtime. Each configuration
supports multiple channels, as depicted in the “DualSpeed” configuration in Figure 2. To ease adjusting
the audio levels, soundmodemconfig can transmit a test signal and can display the received signal in
an oscilloscope like (Figure 5) or spectrum analyzer like (Figure 5) fashion. Figure 3 shows the application
monitoring a 9600 baud FSK channel.

Figure 2: Main Window of Configuration Applica-
tion

Figure 3: Packet Receive Window of Configuration
Application



5 FASTER SPEEDS FOR HANDHELDS

Figure 4: Scope Window of Configuration Applica-
tion

Figure 5: Spectrum Window of Configuration Ap-
plication

5 Faster Speeds for Handhelds

9600 Bit/s FSK requires transceivers suitable for this modulation. Handhelds usually do not fall into this
category. I have often been asked if it was possible to achieve higher transmission using unmodified hand-
held radios.

I have been working with handhelds from Standard, namely the C558 and the C701. The reasons to
choose these handhelds is that I own them and that handhelds from Standard have the worst frequency
response, according to measurements performed by DF9IC [15].

One problem when using handhelds for data transmission is their microphone amplifier AGC, which
introduces nonlinear distortions into the signal. To make matters worse, the Standard handhelds I own
do not mute the internal microphone when an external signal is connected, thus making it susceptible to
ambient noise.

To achieve some immunity to nonlinear distortion, a constant modulus modulation scheme has been
used, namely 8PSK at a symbol rate of 2400 baud centered around a carrier of 1800 Hz.

Because the frequency response of the transceiver introduces intersymbol interference, the receiver has
to be designed to cope with it. I have used a constraint length 3 viterbi equalizer to combat the ISI. Con-
straint length 3 captures most of the channel energy, and is about the maximum that can be implemented
with reasonable CPU consumption. For every symbol, 83 � 512 trellis branches have to be processed.

Since handhelds are most likely used by end users accessing the backbone network, transmissions will
usually be quite short. It is therefore important that the equalizer training is very quick. To achieve this, the
modem employs blocks of known symbols. Blocks of 128 data symbols follow blocks of 16 known training



symbols. The training symbols are used for timing synchronisation and frequency offset synchronisation.
Furthermore, the channel impulse response is estimated using a maximum likelihood estimator [8].

I have not yet decided on what error correcting code to use, the modem transmits raw HDLC encoded
bits at the moment.

The modem is in an experimental stage, and tests over the air were successful if the audio levels have
been adjusted carefully. Although not ready for deployment, it is included in the source distribution for
those who want to experiment. The modem is named “psk”; and it has not yet been converted to cope with
variable sampling rates. It requires 9600 Samples/s and therefore won’t work under Windows.

6 Conclusion and further work

Using a standard soundcard and suitable software as a packet radio modem continues to be a viable low
cost solution. In this article, the architecture and the usage of such a soundcard modem driver that runs on
all major operating systems currently in use has been presented.

Furthermore, the beginnings of a modulation scheme suitable for achieving higher transmission speeds
with unmodified handheld transceivers has been presented as well. Clearly, more work will be needed for
it to become useful in production use, namely an FEC layer should be added and the modem needs to be
converted to support arbitrary sampling rates.

References

[1] The GIMP Toolkit. http://www.gtk.org/.

[2] Damon Chaplin. GLADE – GTK+ User Interface Builder. http://glade.pn.org.

[3] Richard M. Stallman et al. Using and Porting the GNU Compiler Collection. Free Software
Foundation, 2.95.2 edition, 1999.

[4] PC/FlexNet. http://www.flexnet.home.pages.de/. PC/FlexNet.

[5] Ulf Haueisen and Gerald Schreiber. Paxon. http://www.paxon.de.

[6] Ross Johnson, Ben Elliston, and John Bossom. Pthreads-win32.
http://sources.redhat.com/pthreads-win32/, 1999.

[7] Tor Lillqvist. GTK+ and GIMP for Windows. http://user.sgic.fi/ tml/gimp/win32/.

[8] Heinrich Meyr, Marc Moeneclaey, and Stefan A. Fechtel. Digital Communication Receivers,
Synchronization, Channel Estimation and Signal Processing. John Wiley & Sons, Inc, 1997.

[9] Geoffrey J. Noer. Cygwin: A Free Win32 Porting Layer for UNIX R
�

Applications.
http://sources.redhat.com/cygwin/usenix-98/cygwin.html, 1998.



REFERENCES

[10] Thomas Sailer. Soundmodem. http://www.ife.ee.ethz.ch/˜sailer/ham/soundmodem.

[11] Thomas Sailer. “cheaper packet” mit Linux. In 12. Internationale Packet-Radio-Tagung,
Darmstadt, 1996.

[12] Thomas Sailer. “PacketBlaster 97” - Soundkarten-PR mit aktuellen Betriebssystemen. In 13.
Internationale Packet-Radio-Tagung, Darmstadt, 1997.

[13] Thomas Sailer, HB9JNX. FlexNet-Workshop. 1995.

[14] Wolfgang Winter. ein Windows Packet Programm (WPP). http://db0exp.de/wpp/.

[15] Wolf-Henning Rech, DF9IC. Equalizer für 1200 Baud. Adacom Magazin, (7):pp. 71–73, 1994.


