
Network Working Group D. Raggett
Request for Comments: 1942 W3C
Category: Experimental May 1996

 HTML Tables

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. This memo does not specify an Internet standard of any
 kind. Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Abstract

 The HyperText Markup Language (HTML) is a simple markup language used
 to create hypertext documents that are portable from one platform to
 another. HTML documents are SGML documents with generic semantics
 that are appropriate for representing information from a wide range
 of applications. This specification extends HTML to support a wide
 variety of tables. The model is designed to work well with associated
 style sheets, but does not require them. It also supports rendering
 to braille, or speech, and exchange of tabular data with databases
 and spreadsheets. The HTML table model embodies certain aspects of
 the CALS table model, e.g. the ability to group table rows into
 thead, tbody and tfoot sections, plus the ability to specify cell
 alignment compactly for sets of cells according to the context.

Table of Contents

 Recent Changes ... 1
 Brief Introduction ... 2
 Design Rationale ... 5
 Walkthrough of the Table DTD 8
 Recommended Layout Algorithms 23
 HTML Table DTD .. 26
 References .. 29
 Security Considerations 30
 Author’s Address .. 30

Recent Changes

 This specification extends HTML to support tables. The table model
 has grown out of early work on HTML+ and the initial draft of HTML3.
 The earlier model has been been extended in response to requests from
 information providers for improved control over the presentation of
 tabular information:

Raggett Experimental [Page 1]

RFC 1942 HTML Tables May 1996

 * alignment on designated characters such as "." and ":"
 e.g. aligning a column of numbers on the decimal point

 * more flexibility in specifying table frames and rules

 * incremental display for large tables as data is received

 * the ability to support scrollable tables with fixed headers plus
 better support for breaking tables across pages for printing

 * optional column based defaults for alignment properties

 In addition, a major goal has been to provide backwards compatibility
 with the widely deployed Netscape implementation of tables. A
 subsidiary goal has been to simplify importing tables conforming to
 the SGML CALS model. The latest draft makes the ALIGN attribute
 compatible with the latest Netscape and Microsoft browsers. Some
 clarifications have been made to the role of the DIR attribute and
 recommended behaviour when absolute and relative column widths are
 mixed.

 A new element COLGROUP has been introduced to allow sets of columns
 be grouped with different width and alignment properties specified by
 one or more COL elements. The semantics of COLGROUP have been
 clarified over previous drafts, and RULES=BASIC replaced by
 RULES=GROUPS.

 The FRAME and RULES attributes have been modified to avoid SGML name
 clashes with each other, and to avoid clashes with the ALIGN and
 VALIGN attributes. These changes were additionally motivated by the
 desire to avoid future problems if this specification is extended to
 allow FRAME and RULES attributes with other table elements.

A Brief Introduction to HTML Tables

 Tables start with an optional caption followed by one or more rows.
 Each row is formed by one or more cells, which are differentiated
 into header and data cells. Cells can be merged across rows and
 columns, and include attributes assisting rendering to speech and
 braille, or for exporting table data into databases. The model
 provides limited support for control over appearence, for example
 horizontal and vertical alignment of cell contents, border styles and
 cell margins. You can further affect this by grouping rows and
 columns together. Tables can contain a wide range of content, such as
 headers, lists, paragraphs, forms, figures, preformatted text and
 even nested tables.

Raggett Experimental [Page 2]

RFC 1942 HTML Tables May 1996

Example

 <TABLE BORDER>
 <CAPTION>A test table with merged cells</CAPTION>
 <TR><TH ROWSPAN=2><TH COLSPAN=2>Average
 <TH ROWSPAN=2>other
category<TH>Misc
 <TR><TH>height<TH>weight
 <TR><TH ALIGN=LEFT>males<TD>1.9<TD>0.003
 <TR><TH ALIGN=LEFT ROWSPAN=2>females<TD>1.7<TD>0.002
 </TABLE>

 On a dumb terminal, this would be rendered something like:

 A test table with merged cells
 /--\
 | | Average | other | Misc |
 | |-------------------| category |--------|
 | | height | weight | | |
 |---|--------|
 | males | 1.9 | 0.003 | | |
 |---|--------|
 | females | 1.7 | 0.002 | | |
 \--/

Raggett Experimental [Page 3]

RFC 1942 HTML Tables May 1996

 Next, a richer example with grouped rows and columns (adapted from
 "Developing International Software" by Nadine Kano). First here is
 what the table looks like on paper:

 CODE-PAGE SUPPORT IN MICROSOFT WINDOWS
==
Code-Page| Name |ACP OEMCP| Windows Windows Windows
 ID | | | NT 3.1 NT 3.51 95
--
 1200 |Unicode (BMP of ISO 10646) | | X X *
 1250 |Windows 3.1 East. Europe | X | X X X
 1251 |Windows 3.1 Cyrillic | X | X X X
 1252 |Windows 3.1 US (ANSI) | X | X X X
 1253 |Windows 3.1 Greek | X | X X X
 1254 |Windows 3.1 Turkish | X | X X X
 1255 |Hebrew | X | X
 1256 |Arabic | X | X
 1257 |Baltic | X | X
 1361 |Korean (Johab) | X | ** X
--
 437 |MS-DOS United States | X | X X X
 708 |Arabic (ASMO 708) | X | X
 709 |Arabic (ASMO 449+, BCON V4)| X | X
 710 |Arabic (Transparent Arabic)| X | X
 720 |Arabic (Transparent ASMO) | X | X
==

 The markup for this uses COLGROUP elements to group columns and to
 set default column alignment. TBODY elements are used to group rows.
 The FRAME and RULES attributes are used to select which borders to
 render.

 <table border=2 frame=hsides rules=groups>
 <caption>CODE-PAGE SUPPORT IN MICROSOFT WINDOWS</caption>
 <colgroup align=center>
 <colgroup align=left>
 <colgroup align=center span=2>
 <colgroup align=center span=3>
 <thead valign=top>
 <tr>
 <th>Code-Page
ID
 <th>Name
 <th>ACP
 <th>OEMCP
 <th>Windows
NT 3.1
 <th>Windows
NT 3.51
 <th>Windows
95
 <tbody>

Raggett Experimental [Page 4]

RFC 1942 HTML Tables May 1996

 <tr><td>1200<td>Unicode (BMP of ISO 10646)<td><td><td>X<td>X<TD>*
 <tr><td>1250<td>Windows 3.1 Eastern European<td>X<td><td>X<td>X<TD>X
 <tr><td>1251<td>Windows 3.1 Cyrillic<td>X<td><td>X<td>X<TD>X
 <tr><td>1252<td>Windows 3.1 US (ANSI)<td>X<td><td>X<td>X<TD>X
 <tr><td>1253<td>Windows 3.1 Greek<td>X<td><td>X<td>X<TD>X
 <tr><td>1254<td>Windows 3.1 Turkish<td>X<td><td>X<td>X<TD>X
 <tr><td>1255<td>Hebrew<td>X<td><td><td><td>X
 <tr><td>1256<td>Arabic<td>X<td><td><td><td>X
 <tr><td>1257<td>Baltic<td>X<td><td><td><td>X
 <tr><td>1361<td>Korean (Johab)<td>X<td><td><td>**<td>X
 <tbody>
 <tr><td>437<td>MS-DOS United States<td><td>X<td>X<td>X<TD>X
 <tr><td>708<td>Arabic (ASMO 708)<td><td>X<td><td><td>X
 <tr><td>709<td>Arabic (ASMO 449+, BCON V4)<td><td>X<td><td><td>X
 <tr><td>710<td>Arabic (Transparent Arabic)<td><td>X<td><td><td>X
 <tr><td>720<td>Arabic (Transparent ASMO)<td><td>X<td><td><td>X
 </table>

Design Rationale

 The HTML table model has evolved from studies of existing SGML tables
 models, the treatment of tables in common word processing packages,
 and looking at a wide range of tabular layout in magazines, books and
 other paper-based documents. The model was chosen to allow simple
 tables to be expressed simply with extra complexity only when needed.
 This makes it practical to create the markup for HTML tables with
 everyday text editors and reduces the learning curve for getting
 started. This feature has been very important to the success of HTML
 to date.

 Increasingly people are using filters from other document formats or
 direct wysiwyg editors for HTML. It is important that the HTML table
 model fits well with these routes for authoring HTML. This affects
 how the representation handles cells which span multiple rows or
 columns, and how alignment and other presentation properties are
 associated with groups of cells.

 A major consideration for the HTML table model is that the fonts and
 window sizes etc. in use with browsers are not under the author’s
 control. This makes it risky to rely on column widths specified in
 terms of absolute units such as picas or pixels. Instead, tables can
 be dynamically sized to match the current window size and fonts.
 Authors can provide guidance as to the relative widths of columns,
 but user agents should to ensure that columns are wide enough to
 render the width of the largest single element of the cell’s content.
 If the author’s specification must be overridden, it is preferred
 that the relative widths of individual columns are not changed
 drastically.

Raggett Experimental [Page 5]

RFC 1942 HTML Tables May 1996

 For large tables or slow network connections, it is desirable to be
 able to start displaying the table before all of the data has been
 received. The default window width for most user agents shows about
 80 characters, and the graphics for many HTML pages are designed with
 these defaults in mind. Authors can provide a hint to user agents to
 activate incremental display of table contents. This feature requires
 the author to specify the number of columns, and includes provision
 for control of table width and the widths of different columns in
 relative or absolute terms.

 For incremental display, the browser needs the number of columns and
 their widths. The default width of the table is the current window
 size (width="100%"). This can be altered by including a WIDTH
 attribute in the TABLE start tag. By default all columns have the
 same width, but you can specify column widths with one or more COL
 elements before the table data starts.

 The remaining issue is the number of columns. Some people have
 suggested waiting until the first row of the table has been received,
 but this could take a long time if the cells have a lot of content.
 On the whole it makes more sense, when incremental display is
 desired, to get authors to explicitly specify the number of columns
 in the TABLE start tag.

 Authors still need a way of informing the browser whether to use
 incremental display or to automatically size the table to match the
 cell contents. For the two pass auto sizing mode, the number of
 columns is determined by the first pass, while for the incremental
 mode, the number of columns needs to be stated up front. So it seems
 to that COLS=_nn_ would be better for this purpose than a LAYOUT
 attribute such as LAYOUT=FIXED or LAYOUT=AUTO.

 It is generally held useful to consider documents from two
 perspectives: Structural idioms such as headers, paragraphs, lists,
 tables, and figures; and rendering idioms such as margins, leading,
 font names and sizes. The wisdom of past experience encourages us to
 separate the structural information in documents from rendering
 information. Mixing them together ends up causing increased cost of
 ownership for maintaining documents, and reduced portability between
 applications and media.

 For tables, the alignment of text within table cells, and the borders
 between cells are, from the purist’s point of view, rendering
 information. In practice, though, it is useful to group these with
 the structural information, as these features are highly portable
 from one application to the next. The HTML table model leaves most
 rendering information to associated style sheets. The model is
 designed to take advantage of such style sheets but not to require

Raggett Experimental [Page 6]

RFC 1942 HTML Tables May 1996

 them.

 This specification provides a superset of the simpler model presented
 in earlier work on HTML+. Tables are considered as being formed from
 an optional caption together with a sequence of rows, which in turn
 consist of a sequence of table cells. The model further
 differentiates header and data cells, and allows cells to span
 multiple rows and columns.

 Following the CALS table model, this specification allows table rows
 to be grouped into head and body and foot sections. This simplifies
 the representation of rendering information and can be used to repeat
 table head and foot rows when breaking tables across page boundaries,
 or to provide fixed headers above a scrollable body panel. In the
 markup, the foot section is placed before the body sections. This is
 an optimization shared with CALS for dealing with very long tables.
 It allows the foot to be rendered without having to wait for the
 entire table to be processed.

 For the visually impaired, HTML offers the hope of setting to rights
 the damage caused by the adoption of windows based graphical user
 interfaces. The HTML table model includes attributes for labeling
 each cell, to support high quality text to speech conversion. The
 same attributes can also be used to support automated import and
 export of table data to databases or spreadsheets.

 Current desktop publishing packages provide very rich control over
 the rendering of tables, and it would be impractical to reproduce
 this in HTML, without making HTML into a bulky rich text format like
 RTF or MIF. This specification does, however, offer authors the
 ability to choose from a set of commonly used classes of border
 styles. The FRAME attribute controls the appearence of the border
 frame around the table while the RULES attribute determines the
 choice of rulings within the table.

 During the development of this specification, a number of avenues
 were investigated for specifying the ruling patterns for tables. One
 issue concerns the kinds of statements that can be made. Including
 support for edge subtraction as well as edge addition leads to
 relatively complex algorithms. For instance work on allowing the full
 set of table elements to include the FRAME and RULES attributes led
 to an algorithm involving some 24 steps to determine whether a
 particular edge of a cell should be ruled or not. Even this
 additional complexity doesn’t provide enough rendering control to
 meet the full range of needs for tables. The current specification
 deliberately sticks to a simple intuitive model, sufficient for most
 purposes. Further experimental work is needed before a more complex
 approach is standardized.

Raggett Experimental [Page 7]

RFC 1942 HTML Tables May 1996

A walk through the table DTD

 The table document type definition provides the formal definition of
 the allowed syntax for html tables. The following is an annotated
 listing of the DTD. The complete listing appears at the end of this
 document.

 Note that the TABLE element is a block-like element rather a
 character-level element. As such it is a peer of other HTML block-
 like elements such as paragraphs, lists and headers.

Common Attributes

 The following attributes occur in several of the elements and are
 defined here for brevity. In general, all attribute names and values
 in this specification are case insensitive, except where noted
 otherwise. The ID, CLASS and attributes are required for use with
 style sheets, while LANG and DIR are needed for internationalization.

 <!ENTITY % attrs
 "id ID #IMPLIED -- element identifier --
 class NAMES #IMPLIED -- for subclassing elements --
 lang NAME #IMPLIED -- as per RFC 1766 --
 dir (ltr|rtl) #IMPLIED -- I18N text direction --">

 ID
 Used to define a document-wide identifier. This can be used for
 naming positions within documents as the destination of a
 hypertext link. It may also be used by style sheets for
 rendering an element in a unique style. An ID attribute value is
 an SGML NAME token. NAME tokens are formed by an initial letter
 followed by letters, digits, "-" and "." characters. The letters
 are restricted to A-Z and a-z.

 CLASS
 A space separated list of SGML NAME tokens. CLASS names specify
 that the element belongs to the corresponding named classes. It
 allows authors to distinguish different roles played by the same
 tag. The classes may be used by style sheets to provide
 different renderings as appropriate to these roles.

 LANG
 A LANG attribute identifies the natural language used by the
 content of the associated element.The syntax and registry of
 language values are defined by RFC 1766. In summary the language
 is given as a primary tag followed by zero or more subtags,
 separated by "-". White space is not allowed and all tags are
 case insensitive. The name space of tags is administered by

Raggett Experimental [Page 8]

RFC 1942 HTML Tables May 1996

 IANA. The two letter primary tag is an ISO 639 language
 abbreviation, while the initial subtag is a two letter ISO 3166
 country code. Example values for LANG include:

 en, en-US, en-uk, i-cherokee, x-pig-latin.

 DIR
 Human writing systems are grouped into scripts, which determine
 amongst other things, the direction the characters are written.
 Elements of the Latin script are nominally left to right, while
 those of the Arabic script are nominally right to left. These
 characters have what is called strong directionality. Other
 characters can be directionally neutral (spaces) or weak
 (punctuation).

 The DIR attribute specifies an encapsulation boundary which
 governs the interpretation of neutral and weakly directional
 characters. It does not override the directionality of strongly
 directional characters. The DIR attribute value is one of LTR
 for left to right, or RTL for right to left, e.g. DIR=RTL.

 When applied to TABLE, it indicates the geometric layout of rows
 (i.e. row 1 is on right if DIR=RTL, but on the left if DIR=LTR)
 and it indicates a default base directionality for any text in
 the table’s content if no other DIR attribute applies to that
 text.

Horizontal and Vertical Alignment Attributes

 The alignment of cell contents can be specified on a cell by cell
 basis, or inherited from enclosing elements, such as the row, column
 or the table element itself.

 ALIGN
 This specifies the horizontal alignment of cell contents.

 <!-- horizontal alignment attributes for cell contents -->
 <!ENTITY % cell.halign
 "align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED -- alignment char, e.g. char=’:’ --
 charoff CDATA #IMPLIED -- offset for alignment char --"
 >

 The attribute value should be one of LEFT, CENTER, RIGHT,
 JUSTIFY and CHAR. User agents may treat JUSTIFY as left
 alignment if they lack support for text justification.
 ALIGN=CHAR is used for aligning cell contents on a particular
 character.

Raggett Experimental [Page 9]

RFC 1942 HTML Tables May 1996

 For cells spanning multiple rows or columns, where the alignment
 property is inherited from the row or column, the initial row
 and column for the cell determines the appropriate alignment
 property to use.

 Note that an alignment attribute on elements within the cell,
 e.g. on a P element, overrides the normal alignment value for
 the cell.

 CHAR
 This is used to specify an alignment character for use with
 align=char, e.g. char=":". The default character is the decimal
 point for the current language, as set by the LANG attribute.
 The CHAR attribute value is case sensitive.

 CHAROFF
 Specifies the offset to the first occurrence of the alignment
 character on each line. If a line doesn’t include the alignment
 character, it should be horizontally shifted to end at the
 alignment position. The resolved direction of the cell, as
 determined by the inheritance of the DIR attribute, is used to
 set whether the offset is from the left or right margin of the
 cell. For Latin scripts, the offset will be from the left
 margin, while for Arabic scripts, it will be from the right
 margin. In addition to standard units, the "%" sign may be used
 to indicate that the value specifies the alignment position as a
 percentage offset of the current cell, e.g. CHAROFF="30%"
 indicates the alignment character should be positioned 30%
 through the cell.

 When using the two pass layout algorithm, the default alignment
 position in the absence of an explicit or inherited CHAROFF
 attribute can be determined by choosing the position that would
 center lines for which the width before and after the alignment
 character are at the maximum values for any of the lines in the
 column for which ALIGN=CHAR. For incremental table layout the
 suggested default is CHAROFF="50%". If several cells in
 different rows for the same column use character alignment, then
 by default, all such cells should line up, regardless of which
 character is used for alignment. Rules for handling objects too
 large for column apply when the explicit or implied alignment
 results in a situation where the data exceeds the assigned width
 of the column.

 VALIGN
 Defines whether the cell contents are aligned with the top,
 middle or bottom of the cell.

Raggett Experimental [Page 10]

RFC 1942 HTML Tables May 1996

 <!-- vertical alignment attributes for cell contents -->
 <!ENTITY % cell.valign
 "valign (top|middle|bottom|baseline) #IMPLIED"
 >

 If present, the value of the attribute should be one of: TOP,
 MIDDLE, BOTTOM or BASELINE. All cells in the same row with
 valign=baseline should be vertically positioned so that the
 first text line in each such cell occur on a common baseline.
 This constraint does not apply to subsequent text lines in these
 cells.

Inheritance Order

 Alignment properties can be included with most of the table elements:
 COL, THEAD, TBODY, TFOOT, TR, TH and TD. When rendering cells,
 horizontal alignment is determined by columns in preference to rows,
 while for vertical alignment, the rows are more important than the
 columns. The following table gives the detailed precedence order for
 each attribute, where X > Y denotes that X takes precedence over Y:

 ALIGN, CHAR and CHAROFF:

 cells > columns > column groups > rows > row groups > default

 VALIGN, LANG, and DIR:

 cells > rows > row groups > columns > column groups > table > default

 Where cells are defined by TH and TD elements; rows by TR elements;
 row groups by THEAD, TBODY and TFOOT elements, columns by COL
 elements; and column groups by COLGROUP and COL elements. Note that
 there is no inheritance mechanism for the CLASS attribute.

 Properties defined on cells take precedence over inherited
 properties, but are in turn over-ridden by alignment properties on
 elements within cells. In the absence of an ALIGN attribute along the
 inheritance path, the recommended default alignment for table cell
 contents is ALIGN=LEFT for table data and ALIGN=CENTER for table
 headers. The recommended default for vertical alignment is
 VALIGN=MIDDLE. These defaults are chosen to match the behaviour of
 the widely deployed Netscape implementation.

Standard Units for Widths

 Several attributes specify widths as a number followed by an optional
 suffix. The units for widths are specified by the suffix: pt denotes
 points, pi denotes picas, in denotes inches, cm denotes centimeters,

Raggett Experimental [Page 11]

RFC 1942 HTML Tables May 1996

 mm denotes millimeters, em denotes em units (equal to the height of
 the default font), and px denotes screen pixels. The default units
 are screen pixels (chosen for backwards compatibility). The number is
 an integer value or a real valued number such as "2.5". Exponents, as
 in "1.2e2", are not allowed. White space is not allowed between the
 number and the suffix.

 The above set of suffices is augmented for certain elements: "%" is
 used for the WIDTH attribute for the TABLE element. It indicates that
 the attribute specifies the percentage width of the space between the
 current left and right margins, e.g. width="50%". For the COL
 element, "*" is used with the WIDTH attribute to specify relative
 column widths, e.g. width="3*", using the same representation as the
 CALS table model.

The TABLE element

<!ENTITY % Where "(left|center|right)">

<!ELEMENT table - - (caption?, (col*|colgroup*), thead?, tfoot?, tbody+)>

<!ATTLIST table -- table element --
 %attrs; -- id, lang, dir and class --
 align %Where; #IMPLIED -- table position relative to --
 -- window --
 width CDATA #IMPLIED -- table width relative to window --
 cols NUMBER #IMPLIED -- used for immediate display mode --
 border CDATA #IMPLIED -- controls frame width around --
 -- table --
 frame %Frame; #IMPLIED -- which parts of table frame to --
 -- include --
 rules %Rules; #IMPLIED -- controls rules between cells --
 cellspacing CDATA #IMPLIED -- spacing between cells --
 cellpadding CDATA #IMPLIED -- spacing within cells --
 >

 The TABLE element requires both start and end tags. Table elements
 start with an optional CAPTION element, optionally followed by either
 one or more COL elements, or one or more COLGROUP elements, then an
 optional THEAD, an optional TFOOT, and finally one or more TBODY
 elements.

 ID, CLASS, LANG and DIR
 See earlier description of common attributes.

 ALIGN
 Defines the horizontal position of the table relative to the
 current left and right margins. ALIGN=CENTER centers the table

Raggett Experimental [Page 12]

RFC 1942 HTML Tables May 1996

 midway between the left and right margins. ALIGN=LEFT positions
 the table at the left margin, while ALIGN=RIGHT positions the
 table at the right margin. User agents may flow text around the
 right handside of the table for ALIGN=LEFT, or the left handside
 for ALIGN=RIGHT.

 Note you can use <BR CLEAR=LEFT> after the table element if you
 want to avoid text flowing along side the table when you have
 specified ALIGN=LEFT, or <BR CLEAR=RIGHT> for a right aligned
 table. To prevent a right aligned table flowing around something
 else, use <BR CLEAR=RIGHT> before the table etc. Greater control
 over textflow is possible using style sheets.

 WIDTH
 Specifies the desired width of the table. In addition to the
 standard units, the "%" sign may used to indicate that the width
 specifies the percentage width of the space between the current
 left and right margins, e.g. width="50%". In the absence of this
 attribute, the table width can be determined by the layout
 algorithm given later on.

 It is recommended that the table width be increased beyond the
 value indicated by the WIDTH attribute as needed to avoid any
 overflow of cell contents. Such increases should try to avoid
 drastic changes to relative column widths specified by the
 author. To avoid the need for excessive horizontal scrolling, or
 when such scrolling is impractical or undesired, it may be
 appropriate to split words across lines.

 COLS
 Specifies the number of columns for the table. If present the
 user agent may render the table dynamically as data is received
 from the network without waiting for the complete table to be
 received. If the WIDTH attribute is missing, a default of "100%"
 may be assumed for this purpose. If the COLS attribute is
 absent, a prepass through the table’s contents is needed to
 determine the number of columns together with suitable values
 for the widths of each column.

 BORDER
 Specifies the width of the border framing the table, see
 standard units.

 FRAME
 Specifies which sides of the frame to render.

 <!ENTITY % Frame
 "(void|above|below|hsides|lhs|rhs|vsides|box|border)">

Raggett Experimental [Page 13]

RFC 1942 HTML Tables May 1996

 VOID
 Don’t render any sides of the frame.

 ABOVE
 The top side of the frame

 BELOW
 The bottom side of the frame

 HSIDES
 The top and bottom sides of the frame

 LHS
 The left hand side of the frame

 RHS
 The right hand side of the frame

 VSIDES
 The left and right sides of the frame

 BOX
 All four sides of the frame

 BORDER
 All four sides of the frame

 The value "Border" is included for backwards compatibility with
 deployed browsers. If a document includes <TABLE BORDER> the
 user agent will see FRAME=BORDER and BORDER=_implied_. If the
 document includes <TABLE BORDER=_n_> then the user agent should
 treat this as FRAME=BORDER except if _n=0_ for which FRAME=VOID
 is appropriate.

 Note: it would have been preferable to choose values for FRAME
 consistent with the RULES attribute and the values used for
 alignment. For instance: none, top, bottom, topbot, left, right,
 leftright, all. Unfortunately, SGML requires enumerated
 attribute values to be unique for each element, independent of
 the attribute name. This causes immediate problems for "none",
 "left", "right" and "all". The values for FRAME have been chosen
 to avoid clashes with the RULES, ALIGN and VALIGN attributes.
 This provides a measure of future proofing, as it is anticipated
 that that the FRAME and RULES attributes will be added to other
 table elements in future revisions to this specification. An
 alternative would be to make FRAME a CDATA attribute. The
 consensus of the HTML-WG was that the benefits of being able to
 use SGML validation tools to check attributes based on

Raggett Experimental [Page 14]

RFC 1942 HTML Tables May 1996

 enumerated values outweighs the need for consistent names.

 RULES
 Specifies where to draw rules within the table interior.

 <!ENTITY % Rules "(none | groups | rows | cols | all)">

 NONE
 Suppresses internal rulings.

 GROUPS
 The THEAD, TFOOT and TBODY elements divide the table into
 groups of rows, while COLGROUP elements divide the table
 into groups of columns. This choice places a horizontal rule
 between each row group and a vertical rule between each
 column group. Note that every table has at least one row and
 one column group.

 ROWS
 As RULES=GROUPS plus horizontal rules between all rows. User
 agents may choose to use a heavier rule between groups of
 rows and columns for emphasis.

 COLS
 As RULES=GROUPS plus vertical rules between all columns.
 User agents may choose to use a heavier rule between groups
 of rows and columns for emphasis.

 ALL
 Place rules between all rows and all columns. User agents
 may choose to use a heavier rule between groups of rows and
 columns for emphasis.

 If a document includes <TABLE BORDER> or <TABLE BORDER=_n_> then
 the default for the table element is RULES=ALL, except if _n=0_
 for which RULES=NONE is appropriate.

 CELLSPACING
 This attribute is intended for backwards compatibility with
 deployed user agents. It specifies the space between the table
 frame and the first or last cell border for each row or column,
 and between other cells in the table. See standard units.
 Greater control will be possible using style sheet languages.

 CELLPADDING
 This attribute is intended for backwards compatibility with
 deployed user agents. It specifies the amount of space between
 the border of the cell and its contents both above/below, and

Raggett Experimental [Page 15]

RFC 1942 HTML Tables May 1996

 left//right. See standard units. Greater control will be
 possible using style sheet languages.

 If a fixed width is set for the table or column, the CELLSPACING and
 CELLPADDING may demand more space than assigned. Current practice is
 for the latter to take precedence over WIDTH attributes when a
 conflict occurs, although this isn’t required by this specification.

Table Captions

 <!ELEMENT caption - - (%text;)+>

 <!ENTITY % Caption "(top|bottom|left|right)">

 <!ATTLIST caption -- table caption --
 %attrs; -- id, lang, dir and class --
 align %Caption; #IMPLIED -- relative to table --
 >

 The optional CAPTION element is used to provide a caption for the
 table. Both start and end tags are required.

 ID, CLASS, LANG and DIR
 See earlier description of common attributes.

 ALIGN
 This may be used to control the placement of captions relative
 to the table. When present, the ALIGN attribute should have one
 of the values: TOP, BOTTOM, LEFT and RIGHT. It is recommended
 that the caption is made to fit within the width or height of
 the table as appropriate. The default position of the caption is
 deliberately unspecified.

 Note the ALIGN attribute is overused in HTML, but is retained
 here for compatibility with currently deployed browsers.

The COLGROUP Element

 <!ELEMENT colgroup - O (col*)>

 <!ATTLIST colgroup
 %attrs; -- id, lang, dir and class --
 span NUMBER 1 -- default number of columns in --
 -- group --
 width CDATA #IMPLIED -- default width for enclosed --
 -- COLs --
 %cell.halign; -- horizontal alignment in --
 -- cells --

Raggett Experimental [Page 16]

RFC 1942 HTML Tables May 1996

 %cell.valign; -- vertical alignment in cells --
 >

 The COLGROUP element acts as a container for a group of columns, and
 allows you to set default properties for these columns. In the
 absence of a COLGROUP element, all columns in the table are assumed
 to belong to a single column group. Each COLGROUP element can
 contain zero or more COL elements. COLGROUP requires a start tag,
 but the end tag may be omitted. This is useful when defining a
 sequence of COLGROUP elements, e.g.

 <TABLE FRAME=BOX RULES=COLS>
 <COLGROUP>
 <COL WIDTH="1*">
 <COL WIDTH="2*">
 <COLGROUP>
 <COL WIDTH="1*">
 <COL WIDTH="3*">
 <THEAD>
 <TR> ...
 </TABLE>

 COLGROUP elements can be used with the following attributes:

 ID, CLASS, LANG and DIR
 See earlier description of common attributes.

 SPAN
 A positive integer value that specifies a default for how many
 columns are in this group. This attribute should be ignored if
 the COLGROUP element contains one or more COL elements. It
 provides a convenient way of grouping columns without the need
 to supply COL elements.

 WIDTH
 Specifies a default width for each of the grouped columns, see
 standard units. In addition, the "*" suffix denotes relative
 widths, e.g.

 width=64 width in screen pixels
 width=0.5* a relative width of 0.5

 Relative widths act as constraints on the relative widths of
 different columns. If a COLGROUP element specifies a relative
 width of zero, all of the columns in the group should be set to
 their minimum widths, unless they are associated with a COL
 element with an overriding WIDTH attribute. When widths are

Raggett Experimental [Page 17]

RFC 1942 HTML Tables May 1996

 given in absolute units, the user agent can use these to
 constrain the width of the table. The "*" suffix is used to
 simplify importing tables from the CALS representation.

 ALIGN, CHAR, CHAROFF and VALIGN
 Specify values for horizontal and vertical alignment within
 table cells. See inheritance order of alignment properties.

The COL Element

 <!ELEMENT col - O EMPTY>

 <!ATTLIST col -- column groups and --
 -- properties --
 %attrs; -- id, lang, dir and class --
 span NUMBER 1 -- number of columns spanned --
 -- by group --
 width CDATA #IMPLIED -- column width specification --
 %cell.halign; -- horizontal alignment in --
 -- cells --
 %cell.valign; -- vertical alignment in cells --
 >

 This optional element is used to specify column based defaults for
 table properties. It is an empty element, and as such has no
 content, and shouldn’t be given an end tag. Several COL elements may
 be given in succession. COL attributes override those of the parent
 COLGROUP element.

 ID, CLASS, LANG and DIR
 See earlier description of common attributes.

 SPAN
 A positive integer value that specifies how many columns this
 element applies to, defaulting to one. In the absence of SPAN
 attributes the first COL element applies to the first column,
 the second COL element to the second column and so on. If the
 second COL element had SPAN=2, it would apply to the second and
 third column. The next COL element would then apply to the
 fourth column and so on. SPAN=0 has a special significance and
 implies that the COL element spans all columns from the current
 column up to and including the last column. Note that a COL SPAN
 does not define a group. It is merely a way to share attribute
 definitions.

Raggett Experimental [Page 18]

RFC 1942 HTML Tables May 1996

 WIDTH
 Specifies the width of the columns, see standard units. If the
 element spans several columns then the WIDTH attribute specifies
 the width for each of the individual columns - not the width of
 the span. In addition, the "*" suffix denotes relative widths,

 e.g.

 width=64 width in screen pixels
 width=0.5* a relative width of 0.5

 Relative widths act as constraints on the relative widths of
 different columns. If a COL element specifies a relative width
 of zero, the column should always be set to its minimum width.
 When widths are given in absolute units, the user agent can use
 these to constrain the width of the table. The "*" suffix is
 used to simplify importing tables from the CALS representation.

 ALIGN, CHAR, CHAROFF and VALIGN
 Specify values for horizontal and vertical alignment within
 table cells. See inheritance order of alignment properties.

Table Head, Foot and Body Elements

 <!ELEMENT thead - O tr+>
 <!ELEMENT tfoot - O tr+>
 <!ELEMENT tbody O O tr+>

 <!ATTLIST (thead|tbody|tfoot) -- table section --
 %attrs; -- id, lang, dir and class --
 %cell.halign; -- horizontal alignment in --
 -- cells --
 %cell.valign; -- vertical alignment in cells --
 >

 Tables may be divided up into head and body sections. The THEAD and
 TFOOT elements are optional, but one or more TBODY elements are
 always required. If the table only consists of a TBODY section, the
 TBODY start and end tags may be omitted, as the parser can infer
 them. If a THEAD element is present, the THEAD start tag is
 required, but the end tag can be omitted, provided a TFOOT or TBODY
 start tag follows. The same applies to TFOOT.

 Note: This definition provides compatibility with tables created
 for the older model, as well as allowing the end tags for THEAD,
 TFOOT and TBODY to be omitted.

Raggett Experimental [Page 19]

RFC 1942 HTML Tables May 1996

 The THEAD, TFOOT and TBODY elements provide a convenient means for
 controlling rendering. If the table has a large number of rows in
 the body, user agents may choose to use a scrolling region for the
 table body sections. When rendering to a paged device, tables will
 often have to be broken across page boundaries. The THEAD, TFOOT and
 TBODY elements allow the user agent to repeat the table foot at the
 bottom of the current page, and then the table head at the top of
 the new page before continuing on with the table body.

 TFOOT is placed before the TBODY in the markup sequence, so that
 browsers can render the foot before receiving all of the table data.
 This is useful when very long tables are rendered with scrolling
 body sections, or for paged output, involving breaking the table
 over many pages.

 Each THEAD, TFOOT and TBODY element must contain one or more TR
 elements.

 ID, CLASS, LANG and DIR
 See earlier description of common attributes.

 ALIGN, CHAR, CHAROFF and VALIGN
 Specify values for horizontal and vertical alignment within
 table cells. See inheritance order of alignment properties.

Table Row (TR) elements

 <!ELEMENT tr - O (th|td)+>

 <!ATTLIST tr -- table row --
 %attrs; -- id, lang, dir and class --
 %cell.halign; -- horizontal alignment in --
 -- cells --
 %cell.valign; -- vertical alignment in cells --
 >

 The TR or table row element acts as a container for a row of table
 cells. The end tag may be omitted.

 ID, CLASS, LANG and DIR
 See earlier description of common attributes.

 ALIGN, CHAR, CHAROFF and VALIGN
 Specify values for horizontal and vertical alignment within
 table cells. See inheritance order of alignment properties.

Raggett Experimental [Page 20]

RFC 1942 HTML Tables May 1996

Table Cells: TH and TD

 <!ELEMENT (th|td) - O %body.content>

 <!ATTLIST (th|td) -- header or data cell --
 %attrs; -- id, lang, dir and class --
 axis CDATA #IMPLIED -- defaults to cell content --
 axes CDATA #IMPLIED -- list of axis names --
 nowrap (nowrap) #IMPLIED -- suppress word wrap --
 rowspan NUMBER 1 -- number of rows spanned by --
 -- cell --
 colspan NUMBER 1 -- number of cols spanned by --
 -- cell --
 %cell.halign; -- horizontal alignment in --
 -- cells --
 %cell.valign; -- vertical alignment in cells --
 >

 TH elements are used to represent header cells, while TD elements
 are used to represent data cells. This allows user agents to render
 header and data cells distinctly, even in the absence of style
 sheets.

 Cells can span multiple rows and columns, and may be empty. Cells
 spanning rows contribute to the column count on each of the spanned
 rows, but only appear in the markup once (in the first row spanned).
 The row count is determined by the number of TR elements. Any rows
 implied by cells spanning rows beyond this should be ignored.

 If the column count for the table is greater than the number of
 cells for a given row (after including cells for spanned rows), the
 missing cells are treated as occurring on the right hand side of the
 table and rendered as empty cells. If the language context indicates
 a right to left writing order, then the missing cells should be
 placed on the left hand side.

 It is possible to create tables with overlapping cells, for
 instance:

 <table border>
 <tr><td rowspan=2>1<td>2<td>3
 <tr><td rowspan=2>4
 <tr><td colspan=2>5<td>6
 </table>

Raggett Experimental [Page 21]

RFC 1942 HTML Tables May 1996

 which might look something like:

 /-----------\
 | 1 | 2 | 3 |
 | |-------|
 | | 4 | |
 |---|...|---|
 | 5 : | 6 |
 \-----------/

 In this example, the cells labelled 4 and 5 overlap. In such cases,
 the rendering is implementation dependent.

 The AXIS and AXES attributes for cells provide a means for defining
 concise labels for cells. When rendering to speech, these attributes
 may be used to provide abbreviated names for the headers relevant to
 each cell. Another application is when you want to be able to later
 process table contents to enter them into a database. These
 attributes are then used to give database field names. The table’s
 class attribute should be used to let the software recognize which
 tables can be treated in this way.

 ID, CLASS, LANG and DIR
 See earlier description of common attributes.

 AXIS
 This defines an abbreviated name for a header cell, e.g. which
 can be used when rendering to speech. It defaults to the cell’s
 content.

 AXES
 This is a comma separated list of axis names which together
 identify the row and column headers that pertain to this cell.
 It is used for example when rendering to speech to identify the
 cell’s position in the table. If missing the user agent can try
 to follow up columns and left along rows (right for some
 languages) to find the corresponding header cells.

 NOWRAP, e.g. <TD NOWRAP>
 The presence of this attribute disables automatic wrapping of
 text lines for this cell. If used uncautiously, it may result in
 excessively wide cells. This attribute is defined for backwards
 compatibility with deployed user agents. Greater control is
 possible with associated style sheet languages (for example for
 control over overflow handling).

Raggett Experimental [Page 22]

RFC 1942 HTML Tables May 1996

 ROWSPAN, e.g. <TD ROWSPAN=2>
 A positive integer value that defines how may rows this cell
 spans. The default ROWSPAN is 1. ROWSPAN=0 has a special
 significance and implies that the cell spans all rows from the
 current row up to the last row of the table.

 COLSPAN, e.g. <TD COLSPAN=2>
 A positive integer value that defines how may columns this cell
 spans. The default COLSPAN is 1. COLSPAN=0 has a special
 significance and implies that the cell spans all columns from
 the current column up to the last column of the table.

 ALIGN, CHAR, CHAROFF and VALIGN
 Specify values for horizontal and vertical alignment within
 table cells. See inheritance order of alignment properties.

 Note: It is recommended that implementors provide support for the
 Netscape 1.1 WIDTH attribute for TH and TD, although this isn’t part
 of the current specification. Document authors are advised to use
 the width attribute for the COL element instead.

Recommended Layout Algorithms

 If the COLS attribute on the TABLE element specifies the number of
 columns, then the table may be rendered using a fixed layout,
 otherwise the autolayout algorithm described below should be used.

Fixed Layout Algorithm

 For this algorithm, it is assumed that the number of columns is
 known. The column widths by default should be set to the same size.
 Authors may override this by specifying relative or absolute column
 widths, using the COLGROUP or COL elements. The default table width
 is the space between the current left and right margins, but may be
 overridden by the WIDTH attribute on the TABLE element, or determined
 from absolute column widths. To deal with mixtures of absolute and
 relative column widths, the first step is to allocate space from the
 table width to columns with absolute widths. After this, the space
 remaining is divided up between the columns with relative widths.

 The table syntax alone is insufficient to guarantee the consistency
 of attribute values. For instance, the number of columns specified by
 the COLS attribute may be inconsistent with the number of columns
 implied by the COL elements. This in turn, may be inconsistent with
 the number of columns implied by the table cells. A further problem
 occurs when the columns are too narrow to avoid overflow of cell
 contents. The width of the table as specified by the TABLE element or
 COL elements may result in overflow of cell contents. It is

Raggett Experimental [Page 23]

RFC 1942 HTML Tables May 1996

 recommended that user agents attempt to recover gracefully from these
 situations, e.g. by hyphenating words and resorting to splitting
 words if hyphenation points are unknown.

 In the event that an indivisible element causes cell overflow, the
 user agent may consider adjusting column widths and re-rendering the
 table. In the worst case clipping may be considered if column width
 adjustments and/or scrollable cell content are not feasible. In any
 case if cell content is split or clipped this should be indicated to
 the user in an appropriate manner.

Autolayout Algorithm

 If the COLS attribute is missing from the table start tag, then the
 user agent should use the following autolayout algorithm. It uses two
 passes through the table data and scales linearly with the size of
 the table.

 In the first pass, line wrapping is disabled, and the user agent
 keeps track of the minimum and maximum width of each cell. The
 maximum width is given by the widest line. As line wrap has been
 disabled, paragraphs are treated as long lines unless broken by

 elements. The minimum width is given by the widest word or image etc.
 taking into account leading indents and list bullets etc. In other
 words, if you were to format the cell’s content in a window of its
 own, determine the minimum width you could make the window before the
 cell begins to overflow. Allowing user agents to split words will
 minimize the need for horizontal scrolling or in the worst case
 clipping of cell contents.

 This process also applies to any nested tables occuring in cell
 content. The minimum and maximum widths for cells in nested tables
 are used to determine the minimum and maximum widths for these tables
 and hence for the parent table cell itself. The algorithm is linear
 with aggregate cell content, and broadly speaking independent of the
 depth of nesting.

 To cope with character alignment of cell contents, the algorithm
 keeps three running min/max totals for each column: Left of align
 char, right of align char and un-aligned. The minimum width for a
 column is then: max(min_left + min_right, min_non-aligned).

 The minimum and maximum cell widths are then used to determine the
 corresponding minimum and maximum widths for the columns. These in
 turn, are used to find the minimum and maximum width for the table.
 Note that cells can contain nested tables, but this doesn’t
 complicate the code significantly. The next step is to assign column
 widths according to the available space (i.e. the space between the

Raggett Experimental [Page 24]

RFC 1942 HTML Tables May 1996

 current left and right margins).

 For cells which span multiple columns, a simple approach, as used by
 Arena, is to evenly apportion the min/max widths to each of the
 constituent columns. A slightly more complex approach is to use the
 min/max widths of unspanned cells to weight how spanned widths are
 apportioned. Experimental study suggests a blend of the two
 approaches will give good results for a wide range of tables.

 The table borders and intercell margins need to be included in
 assigning column widths. There are three cases:

 1. The minimum table width is equal to or wider than the available
 space. In this case, assign the minimum widths and allow the
 user to scroll horizontally. For conversion to braille, it will
 be necessary to replace the cells by references to notes
 containing their full content. By convention these appear before
 the table.

 2. The maximum table width fits within the available space. In this
 case, set the columns to their maximum widths.

 3. The maximum width of the table is greater than the available
 space, but the minimum table width is smaller. In this case,
 find the difference between the available space and the minimum
 table width, lets call it W. Lets also call D the difference
 between maximum and minimum width of the table.

 For each column, let d be the difference between maximum and
 minimum width of that column. Now set the column’s width to the
 minimum width plus d times W over D. This makes columns with
 large differences between minimum and maximum widths wider than
 columns with smaller differences.

 This assignment step is then repeated for nested tables using the
 minimum and maximum widths derived for all such tables in the first
 pass. In this case, the width of the parent (i.e. enclosing) table
 cell plays the role of the current window size in the above
 description. This process is repeated recursively for all nested
 tables. The topmost table is then rendered using the assigned widths.
 Nested tables are subsequently rendered as part of the parent table’s
 cell contents.

 If the table width is specified with the WIDTH attribute, the user
 agent attempts to set column widths to match. The WIDTH attribute is
 not binding if this results in columns having less than their minimum
 (i.e. indivisible) widths.

Raggett Experimental [Page 25]

RFC 1942 HTML Tables May 1996

 If relative widths are specified with the COL element, the algorithm
 is modified to increase column widths over the minimum width to meet
 the relative width constraints. The COL elements should be taken as
 hints only, so columns shouldn’t be set to less than their minimum
 width. Similarly, columns shouldn’t be made so wide that the table
 stretches well beyond the extent of the window. If a COL element
 specifies a relative width of zero, the column should always be set
 to its minimum width.

HTML Table DTD

 The DTD or document type definition provides the formal definition of
 the allowed syntax for HTML tables.

<!-- Content model entities imported from parent DTD:

 %body.content; allows table cells to contain headers, paras,
 lists, form elements and even arbitrarily nested tables.

 %text; is text characters, including character entities and
 character emphasis elements, IMG and anchors
-->

<!ENTITY % attrs
 "id ID #IMPLIED -- element identifier --
 class NAMES #IMPLIED -- for subclassing elements --
 lang NAME #IMPLIED -- as per RFC 1766 --
 dir (ltr|rtl) #IMPLIED -- I18N text direction --">

<!--
 The BORDER attribute sets the thickness of the frame around the
 table. The default units are screen pixels.

 The FRAME attribute specifies which parts of the frame around
 the table should be rendered. The values are not the same as
 CALS to avoid a name clash with the VALIGN attribute.

 The value "border" is included for backwards compatibility with
 <TABLE BORDER> which yields frame=border and border=implied
 For <TABLE BORDER=1> you get border=1 and frame=implied. In this
 case, its appropriate to treat this as frame=border for backwards
 compatibility with deployed browsers.
-->

<!ENTITY % Frame "(void|above|below|hsides|lhs|rhs|vsides|box|border)">

Raggett Experimental [Page 26]

RFC 1942 HTML Tables May 1996

<!--
 The RULES attribute defines which rules to draw between cells:

 If RULES is absent then assume:
 "none" if BORDER is absent or BORDER=0 otherwise "all"
-->

<!ENTITY % Rules "(none | groups | rows | cols | all)">

<!-- horizontal placement of table relative to window -->
<!ENTITY % Where "(left|center|right)">

<!-- horizontal alignment attributes for cell contents -->
<!ENTITY % cell.halign
 "align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED -- alignment char, e.g. char=’:’ --
 charoff CDATA #IMPLIED -- offset for alignment char --"
 >

<!-- vertical alignment attributes for cell contents -->
<!ENTITY % cell.valign
 "valign (top|middle|bottom|baseline) #IMPLIED"
 >

<!ELEMENT table - - (caption?, (col*|colgroup*), thead?, tfoot?, t
 body+)>
<!ELEMENT caption - - (%text;)+>
<!ELEMENT thead - O (tr+)>
<!ELEMENT tfoot - O (tr+)>
<!ELEMENT tbody O O (tr+)>
<!ELEMENT colgroup - O (col*)>
<!ELEMENT col - O EMPTY>
<!ELEMENT tr - O (th|td)+>
<!ELEMENT (th|td) - O %body.content>

<!ATTLIST table -- table element --
 %attrs; -- id, lang, dir and class --
 align %Where; #IMPLIED -- table position relative to --
 -- window --
 width CDATA #IMPLIED -- table width relative to window --
 cols NUMBER #IMPLIED -- used for immediate display mode --
 border CDATA #IMPLIED -- controls frame width around --
 -- table --
 frame %Frame; #IMPLIED -- which parts of table frame to --
 -- include --
 rules %Rules; #IMPLIED -- rulings between rows and cols --
 cellspacing CDATA #IMPLIED -- spacing between cells --
 cellpadding CDATA #IMPLIED -- spacing within cells --

Raggett Experimental [Page 27]

RFC 1942 HTML Tables May 1996

 >

<!-- ALIGN is used here for compatibility with deployed browsers -->
<!ENTITY % Caption "(top|bottom|left|right)">

<!ATTLIST caption -- table caption --
 %attrs; -- id, lang, dir and class --
 align %Caption; #IMPLIED -- relative to table --
 >

<!--
COLGROUP groups a set of COL elements. It allows you to group
several columns together.
-->
<!ATTLIST colgroup
 %attrs; -- id, lang, dir and class --
 span NUMBER 1 -- default number of columns in --
 -- group --
 width CDATA #IMPLIED -- default width for enclosed COLs --
 %cell.halign; -- horizontal alignment in cells --
 %cell.valign; -- vertical alignment in cells --
 >

<!--
 COL elements define the alignment properties for cells in a given
 column or spanned columns. The WIDTH attribute specifies the
 width of the columns, e.g.

 width=64 width in screen pixels
 width=0.5* relative width of 0.5
-->

<!ATTLIST col -- column groups and properties --
 %attrs; -- id, lang, dir and class --
 span NUMBER 1 -- number of columns spanned by --
 -- group --
 width CDATA #IMPLIED -- column width specification --
 %cell.halign; -- horizontal alignment in cells --
 %cell.valign; -- vertical alignment in cells --
 >

<!--
 Use THEAD to duplicate headers when breaking table
 across page boundaries, or for static headers when
 body sections are rendered in scrolling panel.

 Use TFOOT to duplicate footers when breaking table
 across page boundaries, or for static footers when

Raggett Experimental [Page 28]

RFC 1942 HTML Tables May 1996

 body sections are rendered in scrolling panel.

 Use multiple TBODY sections when rules are needed
 between groups of table rows.
-->
<!ATTLIST (thead|tbody|tfoot) -- table section --
 %attrs; -- id, lang, dir and class --
 %cell.halign; -- horizontal alignment in cells --
 %cell.valign; -- vertical alignment in cells --
 >

<!ATTLIST tr -- table row --
 %attrs; -- id, lang, dir and class --
 %cell.halign; -- horizontal alignment in cells --
 %cell.valign; -- vertical alignment in cells --
 >

<!ATTLIST (th|td) -- header or data cell --
 %attrs; -- id, lang, dir and class --
 axis CDATA #IMPLIED -- defaults to cell content --
 axes CDATA #IMPLIED -- list of axis names --
 nowrap (nowrap) #IMPLIED -- suppress word wrap --
 rowspan NUMBER 1 -- number of rows spanned by cell --
 colspan NUMBER 1 -- number of cols spanned by cell --
 %cell.halign; -- horizontal alignment in cells --
 %cell.valign; -- vertical alignment in cells --
 >

References

 Arena
 W3C’s HTML3 browser, see http://www.w3.org/pub/WWW/Arena/.
 Arena was originally created as a proof of concept demo for
 ideas in the HTML+ specification that preceded HTML3. The
 browser is now being re-implemented to provide a reference
 implementation of HTML3 along with support for style sheets and
 client-side scripting.

 CALS
 Continuous Acquisition and Life-Cycle Support (formerly
 Computer-aided Acquisition and Logistics Support) (CALS) is a
 Department of Defense (DoD) strategy for achieving effective
 creation, exchange, and use of digital data for weapon systems
 and equipment. More information can be found from the US Navy
 CALS home page at http://navysgml.dt.navy.mil/cals.html

Raggett Experimental [Page 29]

RFC 1942 HTML Tables May 1996

 HTML 2.0 (RFC1866)
 Hypertext Markup Language Specification Version 2.0 by T.
 Berners-Lee and D. Connolly, November 1995. Further information
 can be found at http://www.w3.org/pub/WWW/MarkUp/ or at
 ftp://ds.internic.net/rfc/rfc1866.txt

 HTML 3.0
 Hypertext Markup Language Specification Version 3.0. The initial
 draft specification as published in March 1995. Work on refining
 HTML3 is proceeding piecemeal with the new table specification
 as one of the pieces. For W3C related work on HTML, see
 http://www.w3.org/pub/WWW/MarkUp/.

 RFC 1766
 "Tags for the Identification of Languages", by H. Alvestrand,
 UNINETT, March 1995. This document can be downloaded from
 ftp://ds.internic.net/rfc/rfc1766.txt.

Security Considerations

 Security issues are not discussed in this memo.

Author’s Address

 Dave Raggett W3C

 EMail: dsr@w3.org

 The World Wide Web Consortium: http://www.w3.org/

Raggett Experimental [Page 30]

