
6.002 CIRCUITS AND


ELECTRONICS


Introduction and Lumped Circuit Abstraction
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ADMINISTRIVIA


1 Lecturer: Prof. Anant Agarwal 
� Textbook: Agarwal and Lang (A&L)

� Readings are important! 

Handout no. 3 
�	 Assignments — 

Homework exercises 
Labs 
Quizzes 
Final exam 
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�Two homework assignments can 
be missed (except HW11). 

� Collaboration policy 
Homework 

You may collaborate with 
others, but do your own 
write-up. 

Lab 
You may work in a team of 
two, but do you own write-up. 

� Info handout 
�	 Reading for today — 

Chapter 1 of the book 
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What is engineering? 

Purposeful use of science 

What is 6.002 about? 

Gainful employment of 
Maxwell’s equations 

From electrons to digital gates 
and op-amps 
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6.
00

2


Simple amplifier abstraction 

Instruction set abstraction 
Pentium, MIPS 

Software systems 
Operating systems, Browsers 

Filters 

Operational 
amplifier abstraction 
abstraction 

-
+ 

Digital abstraction 

Programming languages 
Java, C++, Matlab 6.001 

Combinational logic f 

Lumped circuit abstraction 

R S 
+ – 

Nature as observed in experiments 

…0.40.30.20.1I 

…12963V 

Physics laws or “abstractions” 
z Maxwell’s 
z Ohm’s 

V = R I 

abstraction for 
tables of data 

Clocked digital abstraction 

Analog system 
components: 
Modulators, 
oscillators, 
RF amps, 
power supplies 6.061 

Mice, toasters, sonar, stereos, doom, space shuttle
6.1706.455 

6.004 

6.033 

M L C V 
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Lumped Circuit Abstraction


Consider 
I 

The Big Jump
from physics

to EECS 

+ 

-

V


? 

Suppose we wish to answer this question: 

What is the current through the bulb? 
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We could do it the Hard Way… 

Apply Maxwell’s 

Differential form Integral form 

Faraday’s ∇× E = −
∂B ∫ E ⋅ dl = −

∂φB 

∂t ∂t 

Continuity ∇⋅ J = − 
∂
∂
ρ 
t

∫ J ⋅ dS = −
∂
∂ 
q
t 

Others ∇⋅ E =
ρ ∫ E ⋅ dS = 

q 

ε0 ε0 
z z 
z z 
z z 

6.002 Fall 2000 Lecture 1 7




Instead, there is an Easy Way…

First, let us build some insight: 

Analogy 

F 

a ? 

I ask you: What is the acceleration? 
You quickly ask me: What is the mass? 

I tell you: m 
F

You respond: a = 
m 

Done ! ! ! 
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Instead, there is an Easy Way…

First, let us build some insight: 

F 

a ? 

Analogy 

In doing so, you ignored 
z the object’s shape 
z its temperature 
z its color 
z point of force application 

Point-mass discretization
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The Easy Way…


Consider the filament of the light bulb. 

A 

B 

We do not care about

z how current flows inside the filament

z its temperature, shape, orientation, etc.

Then, we can replace the bulb with a 

discrete resistor 
for the purpose of calculating the current. 
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The Easy Way…


A 

B 

Replace the bulb with a
discrete resistor 

for the purpose of calculating the current. 

+ 
– V 

A I 

R and I = 
V 
R 

B 
In EE, we do things

the easy way… 

R represents the only property of interest! 
Like with point-mass: replace objects

Fwith their mass m to find a = 
m
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The Easy Way…


+ 
– V 

A I


R and I = 
V

R


B 
In EE, we do things

the easy way… 

R represents the only property of interest!


R relates element v and i


V
I = 
R 

called element v-i relationship


6.002 Fall 2000 Lecture 1 12




R is a lumped element abstraction 
for the bulb. 
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R is a lumped element abstraction 
for the bulb. 

Not so fast, though … 

A 

B 

A S 

B S

I 
+ 

– 

V 

black box 

Although we will take the easy way 
using lumped abstractions for the rest 
of this course, we must make sure (at 
least the first time) that our 
abstraction is reasonable. In this case, 
ensuring that V I 

are defined 
for the element 
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A

V I


must be defined 
B 

A S 

B S

I 
+ 

– 

V 

for the element 
black box 
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l

I must be defined. True when 

I into SA = I out of SB 

True only when	 ∂q = 0 in the filament!
∂t 

∫ J ⋅ dS 
SA 

∫ J ⋅ dS 
SB 

∫ J ⋅ dS − ∫ J ⋅ dS =
∂q 

SA SB 
∂t 

I A 
IB 

I A = IB only if 0 = 
∂ 
∂ 
t 
q 

So let’s assume this 

6.002 Fall 2000 Lecture 1 16 

from
Maxwe l 



V Must also be defined.


see
A & L 

So let’s assume this too 

VAB 

So VAB = ∫AB 
E ⋅ dl 

defined when 0= 
∂
∂
t 
B φ

outside elements 
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Lumped Matter Discipline (LMD) 

0= 
∂ 
∂ 
t 
Bφ outside 

0= 
∂ 
∂ 
t 
q inside elements 

bulb, wire, battery 

Or self imposed constraints: 

More in 
Chapter 1
of A & L 

Lumped circuit abstraction applies when 
elements adhere to the lumped matter 
discipline. 
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Demo Lumped element examples 
whose 
captured by their V–I 
relationship. 

only for the 
sorts of 
questions we 
as EEs would 
like to ask! 

 is completely behavior

Demo 
Exploding resistor demo

can’t predict that! 
Pickle demo 

can’t predict light, smell 
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So, what does this buy us?


Replace the differential equations 
with simple algebra using lumped 
circuit abstraction (LCA). 

For example — 
a 

+ – 

1R 

2R 

3Rb d 
R4


V


R5


c

What can we say about voltages in a loop 
under the lumped matter discipline? 
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What can we say about voltages in a loop 
under LMD? 

+ – 

1R 

2R 

3R 

a 

b d 
R4


V


R5


c 

∫ E ⋅ dl = 
t 
B 

∂
∂

− 
φ under DMD 

0 
∫ E ⋅ dl + ∫ E ⋅ dl + ∫ E ⋅ dl = 0 
ca ab bc 
+ Vca + Vab + Vbc = 0 

Kirchhoff’s Voltage Law (KVL): 
The sum of the voltages in a loop is 0. 
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What can we say about currents?


Consider 
SIca Ida 

baI 

a 
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What can we say about currents?


ca da

ba I

a I S I


S
J ⋅ dS = 

t 
q 
∂
∂

− under LMD 
0 

∫ 

Ica + Ida + Iba = 0 

Kirchhoff’s Current Law (KCL): 
The sum of the currents into a node is 0. 

simply conservation of charge
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KVL and KCL Summary


KVL: 
∑ jν j = 0 

loop 

KCL: 

∑ j i j = 0 

node 
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